List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2928409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured KIT-6 materials functionalized with sulfonic groups for catalytic purposes. Catalysis Today, 2022, 397-399, 526-539.	2.2	12
2	Biofate and cellular interactions of lipid nanoparticles. , 2022, , 211-246.		0
3	Cyclodextrins-in-Liposomes: A Promising Delivery System for Lippia sidoides and Syzygium aromaticum Essential Oils. Life, 2022, 12, 95.	1.1	9
4	Nutraceuticals and functional beverages: Focus on Prebiotics and Probiotics active beverages. , 2022, , 251-258.		0
5	Synthesis and Potential Applications of Lipid Nanoparticles in Medicine. Materials, 2022, 15, 682.	1.3	52
6	Photoprotection and skin irritation effect of hydrogels containing hydroalcoholic extract of red propolis: A natural pathway against skin cancer. Heliyon, 2022, 8, e08893.	1.4	9
7	Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon, 2022, 8, e08938.	1.4	48
8	Exudative versus Nonexudative Age-Related Macular Degeneration: Physiopathology and Treatment Options. International Journal of Molecular Sciences, 2022, 23, 2592.	1.8	27
9	Rhodiola rosea: main features and its beneficial properties. Rendiconti Lincei, 2022, 33, 71-82.	1.0	5
10	Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis. Molecules, 2022, 27, 2202.	1.7	24
11	Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering, 2022, 9, 158.	1.6	72
12	Lactide: Production Routes, Properties, and Applications. Bioengineering, 2022, 9, 164.	1.6	22
13	Lipid Nanoparticles for the Posterior Eye Segment. Pharmaceutics, 2022, 14, 90.	2.0	28
14	Deep-frying purple potato Purple Majesty using sunflower oil: effect on the polyphenols, anthocyanins and antioxidant activity. Heliyon, 2022, 8, e09337.	1.4	7
15	Lipid Constituents of Diatoms (Halamphora) as Components for Production of Lipid Nanoparticles. Pharmaceutics, 2022, 14, 1171.	2.0	3
16	Basal Cell Carcinoma: Pathology, Current Clinical Treatment, and Potential Use of Lipid Nanoparticles. Cancers, 2022, 14, 2778.	1.7	4
17	Non-melanoma skin cancers: physio-pathology and role of lipid delivery systems in new chemotherapeutic treatments. Neoplasia, 2022, 30, 100810.	2.3	10
18	2 ³ central composite rotatable design for the production of neem oil nanoemulsion for antifungal and antiparasitic applications. Journal of Chemical Technology and Biotechnology, 2021, 96, 2159-2167.	1.6	5

#	Article	IF	CITATIONS
19	Noninvasive evaluation of the influence of aucubinâ€containing cosmetic macroemulsion on selected skin parameters. Journal of Cosmetic Dermatology, 2021, 20, 1022-1030.	0.8	9
20	Ordered mesoporous silica-supported metal catalysts for hydrodeoxygenation of anisole derivatives. Microporous and Mesoporous Materials, 2021, 312, 110691.	2.2	10
21	Catalytic role of metals supported on SBA-16 in hydrodeoxygenation of chemical compounds derived from biomass processing. RSC Advances, 2021, 11, 9505-9517.	1.7	12
22	Antimycotic nail polish based on humic acid oated silver nanoparticles for onychomycosis. Journal of Chemical Technology and Biotechnology, 2021, 96, 2208-2218.	1.6	9
23	Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. Cancers, 2021, 13, 1896.	1.7	15
24	Lipid Nanoparticles Loaded with Iridoid Glycosides: Development and Optimization Using Experimental Factorial Design. Molecules, 2021, 26, 3161.	1.7	4
25	Diatom Biosilica Doped with Palladium(II) Chloride Nanoparticles as New Efficient Photocatalysts for Methyl Orange Degradation. International Journal of Molecular Sciences, 2021, 22, 6734.	1.8	19
26	Red seaweeds strengthening the nexus between nutrition and health: phytochemical characterization and bioactive properties of Grateloupia turuturu and Porphyra umbilicalis extracts. Journal of Applied Phycology, 2021, 33, 3365-3381.	1.5	5
27	Lipid Nanoparticles Loaded with Selected Iridoid Glycosides as Effective Components of Hydrogel Formulations. Materials, 2021, 14, 4090.	1.3	6
28	Surface Studies on Glass Powders Used in Commercial Glass-Ionomer Dental Cements. Molecules, 2021, 26, 5279.	1.7	3
29	β-cyclodextrin-containing polymer based on renewable cellulose resources for effective removal of ionic and non-ionic toxic organic pollutants from water. Journal of Hazardous Materials, 2021, 418, 126286.	6.5	34
30	Sweet surfactants I: Fatty acid esters of sucralose. Food Chemistry, 2021, 358, 129827.	4.2	8
31	Advanced applications of alginates in biomedical. , 2021, , 321-337.		0
32	Mono- and Dicationic DABCO/Quinuclidine Composed Nanomaterials for the Loading of Steroidal Drug: 32 Factorial Design and Physicochemical Characterization. Nanomaterials, 2021, 11, 2758.	1.9	9
33	Orange thyme: Phytochemical profiling, in vitro bioactivities of extracts and potential health benefits. Food Chemistry: X, 2021, 12, 100171.	1.8	8
34	Mesostructured cellular foam silica materials for laccase immobilization and tetracycline removal: A comprehensive study. Microporous and Mesoporous Materials, 2020, 291, 109688.	2.2	21
35	A support effect on the hydrodeoxygenation reaction of anisole by ruthenium catalysts. Microporous and Mesoporous Materials, 2020, 293, 109771.	2.2	17
36	Synthesis and physicochemical properties of hierarchical zeolites containing ruthenium oxide nanoparticles and their application in the reaction of dihydroxyacetone isomerization. Microporous and Mesoporous Materials, 2020, 293, 109787.	2.2	6

#	Article	IF	CITATIONS
37	Croton argyrophyllus Kunth Essential Oil-Loaded Solid Lipid Nanoparticles: Evaluation of Release Profile, Antioxidant Activity and Cytotoxicity in a Neuroblastoma Cell Line. Sustainability, 2020, 12, 7697.	1.6	9
38	Drug-Eluting Stents and Balloons—Materials, Structure Designs, and Coating Techniques: A Review. Molecules, 2020, 25, 4624.	1.7	40
39	Applications of Natural, Semi-Synthetic, and Synthetic Polymers in Cosmetic Formulations. Cosmetics, 2020, 7, 75.	1.5	63
40	Natural Ergot Alkaloids in Ocular Pharmacotherapy: Known Molecules for Novel Nanoparticle-Based Delivery Systems. Biomolecules, 2020, 10, 980.	1.8	11
41	Chemical and Physical Properties of Meadowfoam Seed Oil and Extra Virgin Olive Oil: Focus on Vibrational Spectroscopy. Journal of Spectroscopy, 2020, 2020, 1-9.	0.6	5
42	Stearic Acid, Beeswax and Carnauba Wax as Green Raw Materials for the Loading of Carvacrol into Nanostructured Lipid Carriers. Applied Sciences (Switzerland), 2020, 10, 6267.	1.3	14
43	Spray-Dried Structured Lipid Carriers for the Loading of Rosmarinus officinalis: New Nutraceutical and Food Preservative. Foods, 2020, 9, 1110.	1.9	5
44	Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules, 2020, 25, 3731.	1.7	640
45	Two- and Three-Dimensional Spectrofluorimetric Qualitative Analysis of Selected Vegetable Oils for Biomedical Applications. Molecules, 2020, 25, 5608.	1.7	1
46	Synthesis, Characterization and Use of Mesoporous Silicas of the Following Types SBA-1, SBA-2, HMM-1 and HMM-2. Materials, 2020, 13, 4385.	1.3	22
47	Factors Affecting the Retention Efficiency and Physicochemical Properties of Spray Dried Lipid Nanoparticles Loaded with Lippia sidoides Essential Oil. Biomolecules, 2020, 10, 693.	1.8	15
48	Thymus zygis subsp. zygis an Endemic Portuguese Plant: Phytochemical Profiling, Antioxidant, Anti-Proliferative and Anti-Inflammatory Activities. Antioxidants, 2020, 9, 482.	2.2	34
49	Nanopharmaceutics: Part II—Production Scales and Clinically Compliant Production Methods. Nanomaterials, 2020, 10, 455.	1.9	55
50	Ruthenium-containing SBA-12 catalysts for anisole hydrodeoxygenation. Catalysis Today, 2020, 354, 67-76.	2.2	16
51	Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN). Pharmaceutical Development and Technology, 2020, 25, 832-844.	1.1	52
52	Nanomaterials for Skin Delivery of Cosmeceuticals and Pharmaceuticals. Applied Sciences (Switzerland), 2020, 10, 1594.	1.3	79
53	(+)-Limonene 1,2-Epoxide-Loaded SLNs: Evaluation of Drug Release, Antioxidant Activity, and Cytotoxicity in an HaCaT Cell Line. International Journal of Molecular Sciences, 2020, 21, 1449.	1.8	62
54	Perillaldehyde 1,2-epoxide Loaded SLN-Tailored mAb: Production, Physicochemical Characterization and In Vitro Cytotoxicity Profile in MCF-7 Cell Lines. Pharmaceutics, 2020, 12, 161.	2.0	36

#	Article	IF	CITATIONS
55	Properties, Extraction Methods, and Delivery Systems for Curcumin as a Natural Source of Beneficial Health Effects. Medicina (Lithuania), 2020, 56, 336.	0.8	55
56	Nanopharmaceutics: Part l—Clinical Trials Legislation and Good Manufacturing Practices (GMP) of Nanotherapeutics in the EU. Pharmaceutics, 2020, 12, 146.	2.0	75
57	SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opinion on Drug Delivery, 2020, 17, 357-377.	2.4	186
58	Sucupira Oil-Loaded Nanostructured Lipid Carriers (NLC): Lipid Screening, Factorial Design, Release Profile, and Cytotoxicity. Molecules, 2020, 25, 685.	1.7	60
59	Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials, 2020, 10, 292.	1.9	769
60	Diabetic Retinopathy and Ocular Melanoma: How Far We Are?. Applied Sciences (Switzerland), 2020, 10, 2777.	1.3	1
61	Determination of the partition coefficient of isoquinoline alkaloids from <i>Chelidonium majus</i> by reversed phase thin layer chromatography. New Journal of Chemistry, 2020, 44, 7484-7489.	1.4	3
62	Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics. Beverages, 2020, 6, 26.	1.3	46
63	Method development for determination of trace amounts of palladium in environmental water samples by ICP-MS/MS after pre-concentration on thiol-functionalized MCM-41 materials. Talanta, 2020, 217, 121004.	2.9	15
64	FTIR- SPECTROSCOPIC CHARACTERISTICS OF THE DZHAKSY-KLYCH DEPOSIT SALTS. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2020, 5, 214-220.	0.1	0
65	PROSPECTS FOR RATIONAL USE OF MINERAL RESOURCES OF THE DZHAKSY-KLYCH DEPOSIT, THE ARAL REGION. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2020, 5, 196-203.	0.1	0
66	The effect of metal (Nb, Ru, Pd, Pt) supported on SBA-16 on the hydrodeoxygenation reaction of phenol. Catalysis Today, 2019, 325, 61-67.	2.2	22
67	Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis. Molecules, 2019, 24, 2683.	1.7	52
68	Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytotherapy Research, 2019, 33, 2221-2243.	2.8	493
69	Functionalized polystyrene beads as carriers in release studies of two herbicides: 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid. International Journal of Environmental Science and Technology, 2019, 16, 5623-5634.	1.8	11
70	Effect of Polysaccharide Sources on the Physicochemical Properties of Bromelain–Chitosan Nanoparticles. Polymers, 2019, 11, 1681.	2.0	18
71	Modifying release of poorly soluble active pharmaceutical ingredients with the amine functionalized SBA-16 type mesoporous materials. Journal of Biomaterials Applications, 2019, 33, 1214-1231.	1.2	7
72	Quantification of Trans-Resveratrol-Loaded Solid Lipid Nanoparticles by a Validated Reverse-Phase HPLC Photodiode Array. Applied Sciences (Switzerland), 2019, 9, 4961.	1.3	17

#	Article	IF	CITATIONS
73	Application of glycerol to synthesis of solvo-surfactants by using mesoporous materials containing niobium. Microporous and Mesoporous Materials, 2019, 277, 301-308.	2.2	12
74	Release studies of undecylenoyl phenylalanine from topical formulations. Saudi Pharmaceutical Journal, 2018, 26, 709-718.	1.2	14
75	Application of novel hierarchical niobium-containing zeolites for synthesis of alkyl lactate and lactic acid. Journal of Colloid and Interface Science, 2018, 516, 379-383.	5.0	24
76	Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): <i>in vitro</i> testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharmaceutical Development and Technology, 2018, 23, 96-105.	1.1	39
77	Toward Exploiting the Behavior of Niobium-Containing Mesoporous Silicates vs. Polyoxometalates in Catalysis. Frontiers in Chemistry, 2018, 6, 560.	1.8	10
78	Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®. International Journal of Pharmaceutics, 2018, 553, 428-440.	2.6	92
79	Jasmonic acid, methyl jasmonate and methyl dihydrojasmonate as active compounds of topical formulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 558-569.	2.3	3
80	Mesoporous silica nanoparticles as drug delivery systems against melanoma. , 2018, , 437-466.		4
81	Linalool bioactive properties and potential applicability in drug delivery systems. Colloids and Surfaces B: Biointerfaces, 2018, 171, 566-578.	2.5	139
82	Catalytic Isomerization of Dihydroxyacetone to Lactic Acid and Alkyl Lactates over Hierarchical Zeolites Containing Tin. Catalysts, 2018, 8, 31.	1.6	20
83	Evaluation of sexâ€related changes in skin topography and structure using innovative skin testing equipment. Skin Research and Technology, 2018, 24, 614-620.	0.8	16
84	A conjugate of jasmonic acid and tetrapeptide Tyr-Tyr-Lys-Ser-NH ₂ as a potential ingredient for skin care products – synthesis and characterization. New Journal of Chemistry, 2018, 42, 11268-11272.	1.4	1
85	APTES-functionalized mesoporous silica as a vehicle for antipyrine – adsorption and release studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 187-196.	2.3	52
86	Physico-chemical characterization of formulations containing endomorphin-2 derivatives. Amino Acids, 2017, 49, 1719-1731.	1.2	36
87	Abundance of active ingredients in sea-buckthorn oil. Lipids in Health and Disease, 2017, 16, 95.	1.2	105
88	Nanostructures: General information. The use of nanoobjects in medicine and cosmetology. Postepy Higieny I Medycyny Doswiadczalnej, 2017, 71, 0-0.	0.1	1
89	Mesoporous silica materials of MCM-41 type modified with transition metals with potential catalytic activity. Przemysl Chemiczny, 2017, 1, 187-194.	0.0	0
90	Nanosunscreens: from nanoencapsulated to nanosized cosmetic active forms. , 2016, , 25-46.		3

#	Article	IF	CITATIONS
91	In vivo studies of substances used in the cosmetic industry. Postepy Dermatologii I Alergologii, 2016, 3, 163-169.	0.4	5
92	Silver nanoparticles as a challenge for modern cosmetology and pharmacology. , 2016, , 395-417.		2
93	Solid lipid nanoparticles and nanostructured lipid carriers as novel carriers for cosmetic ingredients. , 2016, , 231-255.		13
94	Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108, 235-252.	2.0	203
95	The conjugate of jasmonic acid and tetrapeptide as a novel promising biologically active compound. New Journal of Chemistry, 2016, 40, 9007-9011.	1.4	6
96	Nanocapsules as carriers of active substances. , 2016, , 175-199.		2
97	Sorptive properties of aluminium ions containing mesoporous silica towards l-histidine. Adsorption, 2016, 22, 571-579.	1.4	13
98	Stability analysis of functionalized mesoporous carbon materials in aqueous solution. Chemical Engineering Journal, 2016, 290, 209-219.	6.6	35
99	Mesoporous silica films with accessible pore structures on iron oxide. Dyes and Pigments, 2016, 124, 27-34.	2.0	5
100	Synthesis and characterization of SBA-16 type mesoporous materials containing amine groups. Microporous and Mesoporous Materials, 2016, 220, 231-238.	2.2	44
101	Catalytic hydrodeoxygenation of biomass to biofuel Katalityczna hydrodeoksygenacja biomasy do biopaliwa. Przemysl Chemiczny, 2016, 1, 129-133.	0.0	0
102	Stability determination of the formulations containing hyaluronic acid. International Journal of Cosmetic Science, 2015, 37, 401-407.	1.2	23
103	Atomic force microscopy analysis of synthetic membranes applied in release studies. Applied Surface Science, 2015, 355, 686-697.	3.1	6
104	The tetrapeptide N -acetyl-Pro-Pro-Tyr-Leu in skin care formulations—Physicochemical and release studies. International Journal of Pharmaceutics, 2015, 492, 161-168.	2.6	17
105	Ordered mesoporous silica modified with lanthanum for ibuprofen loading and release behaviour. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 550-558.	2.0	49
106	Selective catalytic oxidations of cyclohexene, thioether and geraniol with hydrogen peroxide. Sensitivity to the structure of mesoporous niobosilicates. Microporous and Mesoporous Materials, 2015, 202, 80-89.	2.2	23
107	Essential Oils as Active Ingredients of Lipid Nanocarriers for Chemotherapeutic Use. Current Pharmaceutical Biotechnology, 2015, 16, 365-370.	0.9	34
108	Double barrier as an effective method for slower delivery rate of ibuprofen. International Journal of Pharmaceutics, 2014, 472, 248-250.	2.6	5

#	Article	IF	CITATIONS
109	Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids and Surfaces B: Biointerfaces, 2014, 123, 452-460.	2.5	85
110	Surface engineering of silica nanoparticles for oral insulin delivery: Characterization and cell toxicity studies. Colloids and Surfaces B: Biointerfaces, 2014, 123, 916-923.	2.5	93
111	Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers – A systematic review of in vitro data. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 1-18.	2.0	327
112	Design of cationic lipid nanoparticles for ocular delivery: Development, characterization and cytotoxicity. International Journal of Pharmaceutics, 2014, 461, 64-73.	2.6	118
113	Determination of Hexapeptide ALA-ASP-LEU-LYS-PRO-THR by MALDI MS. International Journal of Peptide Research and Therapeutics, 2013, 19, 217-224.	0.9	5
114	Frontiers in mesoporous molecular sieves containing niobium: From model materials to catalysts. Catalysis Today, 2012, 192, 80-88.	2.2	22
115	Thermal analysis of activated carbons modified with silver metavanadate. Thermochimica Acta, 2012, 541, 42-48.	1.2	11
116	Optimizing SLN and NLC by 22 full factorial design: Effect of homogenization technique. Materials Science and Engineering C, 2012, 32, 1375-1379.	3.8	72
117	Experimental factorial design applied to mucoadhesive lipid nanoparticles via multiple emulsion process. Colloids and Surfaces B: Biointerfaces, 2012, 100, 84-89.	2.5	56
118	Active Compounds Release from Semisolid Dosage Forms. Journal of Pharmaceutical Sciences, 2012, 101, 4032-4045.	1.6	55
119	Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1034-1041.	1.7	80
120	The influence of silver on the physicochemical and catalytic properties of activated carbons. Chemical Engineering Journal, 2012, 189-190, 422-430.	6.6	14
121	Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids and Surfaces B: Biointerfaces, 2011, 88, 150-157.	2.5	139
122	Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids and Surfaces B: Biointerfaces, 2010, 75, 538-542.	2.5	118
123	Curcuminoids-loaded lipid nanoparticles: Novel approach towards malaria treatment. Colloids and Surfaces B: Biointerfaces, 2010, 81, 263-273.	2.5	215
124	Lipid Nanoparticles: Effect on Bioavailability and Pharmacokinetic Changes. Handbook of Experimental Pharmacology, 2010, , 115-141.	0.9	155
125	Studies on mesoporous niobosilicates synthesized using F127 triblock copolymer. Adsorption, 2009, 15, 247-253.	1.4	7
126	Q10-loaded NLC versus nanoemulsions: Stability, rheology and in vitro skin permeation. International Journal of Pharmaceutics, 2009, 377, 207-214.	2.6	136

8

#	Article	IF	CITATIONS
127	The use of mesoporous molecular sieves containing niobium for the synthesis of vegetable oil-based products. Catalysis Today, 2009, 140, 23-29.	2.2	28
128	Microwave-assisted synthesis of nioboorganosilicates and microwave-accelerated catalytic activity of thereof. Catalysis Today, 2009, 142, 293-297.	2.2	7
129	Mesoporous niobosilicates serving as catalysts for synthesis of fragrances. Catalysis Today, 2009, 142, 288-292.	2.2	36
130	Nanostructured lipid carrier-based hydrogel formulations for drug delivery: A comprehensive review. Expert Opinion on Drug Delivery, 2009, 6, 165-176.	2.4	118
131	"Hard―vs. "Soft―Templating Synthesis of Mesoporous Nb2O5 Catalysts for Oxidation Reactions. Topics in Catalysis, 2008, 49, 193-203.	1.3	19
132	SYNTHESIS OF NIOBIA NANOSTRUCTURES AND THEIR CATALYTIC AND PHOTOCATALYTIC ACTIVITY. , 2008, , .		0
133	Exploring the catalytic activity of regular and ultralarge-pore Nb,Sn-SBA-15 mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2007, 170, 1432-1437.	1.5	1
134	Controlled synthesis of mesoporous NbMSU-X: influence of the preparation route. Studies in Surface Science and Catalysis, 2007, 170, 519-524.	1.5	3
135	Synthesis under different conditions of NbMCM-48 with an epoxidation activity. Studies in Surface Science and Catalysis, 2007, 165, 73-76.	1.5	2
136	Three-dimensional large pore cubic niobosilicates: direct synthesis and characterization. Studies in Surface Science and Catalysis, 2007, 165, 69-72.	1.5	1
137	Synthesis and characterization of SBA-15 type mesoporous silicate containing niobium and tin. Studies in Surface Science and Catalysis, 2007, , 95-99.	1.5	1
138	Comparison of oxidation properties of Nb and Sn in mesoporous molecular sieves. Applied Catalysis A: General, 2007, 321, 40-48.	2.2	27
139	Assessment of pore structure parameters for polymer-templated mesoporous molecular sieves by means of nitrogen and argon adsorption. Applied Surface Science, 2007, 253, 5676-5681.	3.1	2
140	Catalytic properties of niobium and gallium oxide systems supported on MCM-41 type materials. Applied Catalysis A: General, 2007, 325, 328-335.	2.2	18
141	Formation of the nanocrystalline mesoporous niobium-silicon oxynitride. Catalysis Today, 2006, 118, 410-415.	2.2	5
142	The role of MCM-41 composition in the creation of basicity by alkali metal impregnation. Microporous and Mesoporous Materials, 2006, 90, 362-369.	2.2	25
143	Use of hexane isomers adsorption for texture characterisation of niobium-containing MCM-41 mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2005, 158, 1533-1540.	1.5	2
144	Effect of texture and structure on the catalytic activity of mesoporous niobosilicates for the oxidation of cyclohexene. Microporous and Mesoporous Materials, 2005, 78, 281-288.	2.2	41

#	Article	IF	CITATIONS
145	Comparison of Adsorption Properties of Polymer-Templated Mesoporous Silicas with Incorporated Niobium. Adsorption, 2005, 11, 737-743.	1.4	1
146	Transition metal containing (Nb, V, Mo) SBA-15 molecular sieves —synthesis, characteristic and catalytic activity in gas and liquid phase oxidation. Studies in Surface Science and Catalysis, 2005, 158, 1461-1468.	1.5	25
147	Three-Dimensional Cubic Mesoporous Molecular Sieves of FDU-1 Containing Niobium:  Dependence of Niobium Source on Structural Properties. Langmuir, 2005, 21, 755-760.	1.6	15
148	A novel mixed cationic-nonionic surfactant templating approach for the synthesis of mesoporous niobium containing silica-a promising epoxidation catalyst. Studies in Surface Science and Catalysis, 2005, 156, 155-162.	1.5	1
149	Alkali-resistance of MCM-41 mesoporous molecular sieves containing various T (Al, Si, Nb) elements. Studies in Surface Science and Catalysis, 2004, 154, 439-445.	1.5	1
150	FTIR study of FE-doped MCM-41 mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2004, 154, 1490-1497.	1.5	3
151	The use of niobium containing mesoporous molecular sieves in the liquid phase oxidation. Studies in Surface Science and Catalysis, 2004, 154, 2610-2617.	1.5	9
152	Catalytic behavior of niobium-containing SBA-15 molecular sieves in the oxidation of cyclohexene. Studies in Surface Science and Catalysis, 2004, , 2936-2944.	1.5	11
153	Template synthesis and characterisation of MCM-41 mesoporous molecular sieves containing various transition metal elements—TME (Cu, Fe, Nb, V, Mo). Journal of Physics and Chemistry of Solids, 2004, 65, 571-581.	1.9	54
154	The role of niobium in the gas- and liquid-phase oxidation on metallosilicate MCM-41-type materials. Journal of Catalysis, 2004, 224, 314-325.	3.1	71
155	Cu state and behaviour in MCM-41 mesoporous molecular sieves modified with copper during the synthesis––comparison with copper exchanged materials. Microporous and Mesoporous Materials, 2004, 74, 23-36.	2.2	54
156	Nickel containing MCM-41 and AlMCM-41 mesoporous molecular sievesCharacteristics and activity in the hydrogenation of benzene. Applied Catalysis A: General, 2004, 268, 241-253.	2.2	134
157	Textural and structural properties of niobium-containing micro-, meso- and macroporous molecular sieves. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 103-111.	2.3	19
158	Synthesis and Characterization of Polymer-Templated Mesoporous Silicas Containing Niobium. Journal of Physical Chemistry B, 2004, 108, 3722-3727.	1.2	27
159	Synthesis and characterisation of multi-element (Nb, V, Mo) MCM-41 molecular sieves. Studies in Surface Science and Catalysis, 2004, , 848-855.	1.5	8
160	Chalcogenide-Halides of Niobium (V). 1. Gas-Phase Structures of NbOBr3, NbSBr3, and NbSCl3. 2. Matrix Infrared Spectra and Vibrational Force Fields of NbOBr3, NbSBr3, NbSCl3, and NbOCl3 ChemInform, 2003, 34, no.	0.1	0
161	Epoxidation of cyclohexene on Nb-containing meso- and macroporous materials. Catalysis Today, 2003, 78, 487-498.	2.2	86
162	Characterization techniques employed in the study of niobium and tantalum-containing materials. Catalysis Today, 2003, 78, 543-553.	2.2	37

#	Article	IF	CITATIONS
163	Effect of H2–O2 pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts. Applied Catalysis A: General, 2003, 251, 107-120.	2.2	107
164	Chalcogenide-Halides of Niobium (V). 1. Gas-Phase Structures of NbOBr3, NbSBr3, and NbSCl3. 2. Matrix Infrared Spectra and Vibrational Force Fields of NbOBr3, NbSBr3, NbSCl3, and NbOCl3. Inorganic Chemistry, 2003, 42, 1296-1305.	1.9	17
165	38 Effects of reducing and oxidising pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts. Studies in Surface Science and Catalysis, 2003, , 201-204.	1.5	5
166	Niobium and Tantalum. , 2003, , 241-312.		6
167	A possible use of modified mesoporous molecular sieves in water treatment processes. Studies in Surface Science and Catalysis, 2002, , 591-598.	1.5	4
168	The effect of niobium source used in the synthesis on the properties of NbMCM-41 materials. Studies in Surface Science and Catalysis, 2002, 142, 1363-1370.	1.5	10
169	Oxidative properties of niobium-containing mesoporous silica catalysts. Catalysis Today, 2001, 70, 169-181.	2.2	100
170	07-O-04 - A comparative study of Cu interaction with niobium-and aluminium-containing MCM-41 molecular sieves. Studies in Surface Science and Catalysis, 2001, , 151.	1.5	4
171	Physico-chemical and catalytic properties of MCM-41 mesoporous molecular sieves containing transition metals (Cu, Ni, and Nb). Studies in Surface Science and Catalysis, 2000, 129, 813-822.	1.5	36
172	Nb-containing mesoporous molecular sieves — a possible application in the catalytic processes. Microporous and Mesoporous Materials, 2000, 35-36, 195-207.	2.2	68
173	Effect of hydrogen sulphide on nitric oxide adsorption and decomposition on Cu-containing molecular sieves. Applied Catalysis B: Environmental, 2000, 28, 197-207.	10.8	12
174	Title is missing!. Topics in Catalysis, 2000, 11/12, 343-350.	1.3	33
175	Physico-chemical and catalytic properties of Ni-containing mesoporous molecular sieves of MCM-41 type. Studies in Surface Science and Catalysis, 2000, , 3047-3052.	1.5	15
176	NO adsorption and decomposition on Cu-containing mesoporous molecular sieves - comparison with CuZSM-5. Studies in Surface Science and Catalysis, 1999, 125, 633-640.	1.5	20
177	Niobium Compounds:Â Preparation, Characterization, and Application in Heterogeneous Catalysis. Chemical Reviews, 1999, 99, 3603-3624.	23.0	716
178	The possible use of mesoporous molecular sieves for deodorisation. Studies in Surface Science and Catalysis, 1999, 125, 691-698.	1.5	16
179	Effect on the reaction between methanol and hydrogen sulphide of Na or Mo doping on zirconia and alumina. Applied Catalysis A: General, 1998, 171, 109-115.	2.2	20
180	Synthesis and transformation of thiols and organic sulfides on MCM-41 mesoporous molecular sieves. Studies in Surface Science and Catalysis, 1998, 117, 509-516.	1.5	12

#	Article	IF	CITATIONS
181	Acidity study of Nb-containing MCM-41 mesoporous materials. Comparison with that of Al-MCM-41. Catalysis Letters, 1997, 45, 259-265.	1.4	88
182	Synthesis and characterization of niobium-containing MCM-41. Zeolites, 1997, 18, 356-360.	0.9	103
183	Solid-state interaction between niobium oxide and Y-type zeolites. Studies in Surface Science and Catalysis, 1995, 94, 270-277.	1.5	12