Hassan R El-Ramady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2928333/publications.pdf

Version: 2024-02-01

130 papers 2,553 citations

201385 27 h-index 243296 44 g-index

134 all docs

134 docs citations

134 times ranked 2018 citing authors

#	Article	IF	CITATIONS
1	Biochemical and Physiological Response of Marigold (Tagetes ErectaÂL.) to Foliar Application of Salicylic Acid and Potassium Humate in Different Soil Growth Media. Gesunde Pflanzen, 2023, 75, 223-236.	1.7	6
2	Refining high-quality leaf protein and valuable co-products from green biomass of Jerusalem artichoke (Helianthus tuberosus L.) for sustainable protein supply. Biomass Conversion and Biorefinery, 2022, 12, 2149-2164.	2.9	10
3	Sustainable Applications of Nanofibers in Agriculture and Water Treatment: A Review. Sustainability, 2022, 14, 464.	1.6	24
4	Impact of hexachlorocyclohexane addition on the composition and potential functions of the bacterial community in red and purple paddy soil. Environmental Pollution, 2022, 297, 118795.	3.7	10
5	Formation of environmentally persistent free radicals from photodegradation of triclosan by metal oxides/silica suspensions and particles. Chemosphere, 2022, 290, 133322.	4.2	16
6	In Vitro Investigation of the Antioxidant and Cytotoxic Potential of Tabernaemontana ventricosa Hochst. ex A. DC. Leaf, Stem, and Latex Extracts. Horticulturae, 2022, 8, 91.	1.2	7
7	Plant Nutrition under Climate Change and Soil Carbon Sequestration. Sustainability, 2022, 14, 914.	1.6	55
8	Anatomical Studies on Three Jerusalem Artichoke (Helianthus tuberosus L.) Cultivars Grown in Hungary. Journal of Sustainable Agricultural Sciences, 2022, .	0.0	0
9	Paclobutrazol Improves the Quality of Tomato Seedlings to Be Resistant to Alternaria solani Blight Disease: Biochemical and Histological Perspectives. Plants, 2022, 11, 425.	1.6	17
10	Biosynthesis of Nano-Selenium and Its Impact on Germination of Wheat under Salt Stress for Sustainable Production. Sustainability, 2022, 14, 1784.	1.6	13
11	Acclimatization of In Vitro Banana Seedlings Using Root-Applied Bio-Nanofertilizer of Copper and Selenium. Agronomy, 2022, 12, 539.	1.3	15
12	Monitoring and Inference of Behavioral Resistance in Beneficial Insects to Insecticides in Two Pest Control Systems: IPM and Organic. Agronomy, 2022, 12, 538.	1.3	4
13	Global Soil Science Education to Address the Soil $\hat{a}\in$ Water $\hat{a}\in$ Climate Change Nexus. Environment Biodiversity and Soil Security, 2022, 6, 2-3.	0.1	1
14	Green Biotechnology of Oyster Mushroom (Pleurotus ostreatus L.): A Sustainable Strategy for Myco-Remediation and Bio-Fermentation. Sustainability, 2022, 14, 3667.	1.6	25
15	Can Nanofertilizers Mitigate Multiple Environmental Stresses for Higher Crop Productivity?. Sustainability, 2022, 14, 3480.	1.6	31
16	Sustainable Production of Tomato Plants (Solanum lycopersicum L.) under Low-Quality Irrigation Water as Affected by Bio-Nanofertilizers of Selenium and Copper. Sustainability, 2022, 14, 3236.	1.6	26
17	Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management. Sustainability, 2022, 14, 4328.	1.6	15
18	Sources of silicon and nano-silicon in soils and plants. , 2022, , 1-15.		1

#	Article	IF	CITATIONS
19	Toxic effects of nanoparticles under combined stress on plants. , 2022, , 109-129.		2
20	Can Grafting Manage Fusarium Wilt Disease of Cucumber and Increase Productivity under Heat Stress?. Plants, 2022, 11, 1147.	1.6	7
21	Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. Sustainability, 2022, 14, 4941.	1.6	34
22	Contributions of partition and adsorption to polycyclic aromatic hydrocarbons sorption by fractionated soil at different particle sizes. Chemosphere, 2022, 301, 134715.	4.2	23
23	Functional Yogurt Fortified with Honey Produced by Feeding Bees Natural Plant Extracts for Controlling Human Blood Sugar Level. Plants, 2022, 11, 1391.	1.6	0
24	A Comparative Photographic Review on Higher Plants and Macro-Fungi: A Soil Restoration for Sustainable Production of Food and Energy. Sustainability, 2022, 14, 7104.	1.6	6
25	Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture. Sustainability, 2022, 14, 8329.	1.6	20
26	An Overview on Anatomy of Jerusalem Artichoke (Helianthus tuberosus L.). Environment Biodiversity and Soil Security, 2021, 5, 121-130.	0.1	1
27	The living cells and elemental synthesis: New insights. Environment Biodiversity and Soil Security, 2021, .	0.1	0
28	Grafting Improves Fruit Yield of Cucumber Plants Grown under Combined Heat and Soil Salinity Stresses. Horticulturae, 2021, 7, 61.	1.2	16
29	Anatomical Changes of Cultivated Plants under Combined Stress: An Urgent Need for Investigation. Environment Biodiversity and Soil Security, 2021, .	0.1	0
30	Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicology and Environmental Safety, 2021, 212, 111962.	2.9	87
31	Temperate Fruit Trees under Climate Change: Challenges for Dormancy and Chilling Requirements in Warm Winter Regions. Horticulturae, 2021, 7, 86.	1.2	33
32	Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: a review. Environmental Monitoring and Assessment, 2021, 193, 449.	1.3	21
33	Is Nano-Biofortification the Right Approach for Malnutrition in the Era of COVID-19 and Climate change?. Egyptian Journal of Soil Science, 2021, 61, 141-150.	0.1	4
34	Contradictory Results of Soil Greenhouse Gas Emissions as Affected by Biochar Application: Special Focus on Alkaline Soils. International Journal of Environmental Research, 2021, 15, 903-920.	1.1	7
35	Planning for disposal of COVID-19 pandemic wastes in developing countries: a review of current challenges. Environmental Monitoring and Assessment, 2021, 193, 592.	1.3	21
36	Assessing the Complex Links Between Soils and Human Health: An Area of Pressing Need. Frontiers in Soil Science, 2021, 1, .	0.8	2

#	Article	IF	Citations
37	Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. Biology, 2021, 10, 791.	1.3	92
38	Soils, Biofortification, and Human Health Under COVID-19: Challenges and Opportunities. Frontiers in Soil Science, 2021, 1, .	0.8	1
39	Nano-biofortification of different crops to immune against COVID-19: A review. Ecotoxicology and Environmental Safety, 2021, 222, 112500.	2.9	26
40	Environment, Biodiversity and Soil Security: A New Dimension in the Era of COVID-19. Environment Biodiversity and Soil Security, 2021, .	0.1	3
41	Precision Farming Technologies to Increase Soil and Crop Productivity. Springer Water, 2021, , 117-154.	0.2	7
42	Paclobutrazol Applications in Agriculture, Plant Tissue Cultures and Its Potential as Stress Ameliorant: A mini Review. Environment Biodiversity and Soil Security, 2021, 5, 1-2.	0.1	4
43	Biodiversity Resources: A case Study of Egyptian Natural Reserves and Botanical Gardens. Environment Biodiversity and Soil Security, 2021, 5, 1-2.	0.1	0
44	Nano-Silicon for Plant Biotic Stress: A Short Communication. Environment Biodiversity and Soil Security, 2021, 5, 1-2.	0.1	0
45	Molecular Plant Nutrition in the Era of Nanotechnology: A Short Communication. Environment Biodiversity and Soil Security, 2021, 5, 1-2.	0.1	O
46	Application of Nanoparticles to Control Cuscuta spp. in Horticultural Orchards: A Short Communication. Environment Biodiversity and Soil Security, 2021, 5, 1-2.	0.1	0
47	Foliar Application of Nano-Fertilizers for Fruit Cracking: A Short Communication. Environment Biodiversity and Soil Security, 2021, 5, 1-2.	0.1	O
48	Nano-Management of Phytoplasma Diseases in Horticultural Plants: A Short Communication. Environment Biodiversity and Soil Security, 2021, 5, 1-2.	0.1	0
49	Nano-Selenium and its Interaction with other Nano-Nutrients in Soil under Stressful Plants: A Mini-Review. Environment Biodiversity and Soil Security, 2021, 5, 205-2.	0.1	1
50	Microplastics Pollution in the Environment: Challenges and Future Prospectives: A Mini-Review. Environment Biodiversity and Soil Security, 2021, 5, 1-2.	0.1	0
51	Sustainable and Green Management of Wastewater Under Climate Change Conditions. Handbook of Environmental Chemistry, 2021, , 443-461.	0.2	3
52	Fortification of Functional Foods for Human Health: A Case Study of Honey and Yogurt for Diabetes. Environment Biodiversity and Soil Security, 2021, 5, 1-2.	0.1	0
53	Nanofibers for Sustainable Agriculture: A Short Communication. Egyptian Journal of Soil Science, 2021, 61, 373-380.	0.1	2
54	Edible Mushroom of Pleurotus spp.:A Case Study of Oyster Mushroom (Pleurotus ostreatus L.). Environment Biodiversity and Soil Security, 2021, 5, 1-2.	0.1	3

#	Article	IF	CITATIONS
55	Edible Mushroom Cultivated in Polluted Soils and its Potential Risks on Human Health: A short communication. Egyptian Journal of Soil Science, 2021, 61, 381-389.	0.1	2
56	Nano-Management of Bitter Pit in Apple Crop: A Short Communication. Environment Biodiversity and Soil Security, 2021, .	0.1	0
57	Nano-Nutrients for Carbon Sequestration: A Short Communication. Egyptian Journal of Soil Science, 2021, 61, 389-398.	0.1	2
58	Identification of Bioactive Phytochemicals in Leaf Protein Concentrate of Jerusalem Artichoke (Helianthus tuberosus L.). Plants, 2020, 9, 889.	1.6	12
59	Selenium and Nano-Selenium Biofortification for Human Health: Opportunities and Challenges. Soil Systems, 2020, 4, 57.	1.0	50
60	Phosphorus Availability and Potential Environmental Risk Assessment in Alkaline Soils. Agriculture (Switzerland), 2020, 10, 172.	1.4	8
61	Chemical Traits of Fermented Alfalfa Brown Juice: Its Implications on Physiological, Biochemical, Anatomical, and Growth Parameters of Celosia. Agronomy, 2020, 10, 247.	1.3	16
62	New Approaches for Improving Salt Stress Tolerance in Rice. , 2020, , 247-268.		9
63	Agricultural Waste and its Nano-Management: Mini Review. Egyptian Journal of Soil Science, 2020, .	0.1	5
64	Soil and Air Pollution in the Era of COVID-19: A Global Issue. Egyptian Journal of Soil Science, 2020, .	0.1	3
65	Towards a New Concept of Sustainable Plant Nutrition. Environment Biodiversity and Soil Security, 2020, 4, 1-5.	0.1	5
66	Biofortification of Stevia rebaudiana (Bert.) Plant with Selenium. Environment Biodiversity and Soil Security, 2020, .	0.1	4
67	Management of Greenhouse Cucumber Production under Arid Environments: A Review. Environment Biodiversity and Soil Security, 2020, .	0.1	4
68	Sustainable Approaches of Trichoderma under Changing Environments for Vegetable Production. Environment Biodiversity and Soil Security, 2020, .	0.1	1
69	Using of Nano - Selenium in Reducing the Negative Effects of High Temperature Stress on Chrysanthemum morifolium Ramat Journal of Sustainable Agricultural Sciences, 2020, .	0.0	10
70	New Pollution Challenges in Groundwater and Wastewater Due to COVID-19. Journal of Sustainable Agricultural Sciences, 2020, .	0.0	2
71	ROLE OF PLANT PROBIOTICS, SUCROSE AND SILICON IN THE PRODUCTION OF TOMATO (SOLANUM) Tj ETQq1 I Environmental Research, 2020, 18, 7685-7701.	1 0.78431 0.2	4 rgBT /Ove 2
72	Management of Heat Stress in Tomato Seedlings under Arid and Semi-Arid Regions: A Review. Environment Biodiversity and Soil Security, 2020, .	0.1	4

#	Article	IF	CITATIONS
73	Alfalfa Growth under Changing Environments: An Overview. Environment Biodiversity and Soil Security, 2020, .	0.1	1
74	Cassava Cultivars Response to Different Levels of Potassium Fertilization under Drip Irrigation and Sandy Soil Conditions. Egyptian Journal of Soil Science, 2020, .	0.1	0
75	Sustainable Biorefinery and Production of Alfalfa (Medicago sativa L.). Egyptian Journal of Botany, 2020, .	0.1	8
76	Response of Phalaenopsis Orchid to Selenium and Bio-Nano-Selenium: In Vitro Rooting and Acclimatization. Environment Biodiversity and Soil Security, 2020, .	0.1	3
77	Agro-Pollutants and their Nano-Remediation from Soil and Water: A Mini-Review. Environment Biodiversity and Soil Security, 2020, .	0.1	2
78	Future Soil Issues. World Soils Book Series, 2019, , 215-224.	0.1	1
79	Soil Research History. World Soils Book Series, 2019, , 13-31.	0.1	1
80	Soil Fertility and Its Security. World Soils Book Series, 2019, , 137-157.	0.1	1
81	Soil Health and Its Biology. World Soils Book Series, 2019, , 175-185.	0.1	3
82	Soils and Humans. World Soils Book Series, 2019, , 201-213.	0.1	2
83	Seasonal and Spatial Distribution of Soil Trace Elements around Kitchener Drain in the Northern Nile Delta, Egypt. Agriculture (Switzerland), 2019, 9, 152.	1.4	23
84	Mobility, distribution, and potential risk assessment of selected trace elements in soils of the Nile Delta, Egypt. Environmental Monitoring and Assessment, 2019, 191, 713.	1.3	31
85	Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiology and Biochemistry, 2019, 139, 1-10.	2.8	157
86	Sulfur promotes biocontrol of purple blotch disease via Trichoderma spp. and enhances the growth, yield and quality of onion. Applied Soil Ecology, 2019, 134, 15-24.	2.1	16
87	Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum. Photosynthesis Research, 2019, 139, 449-460.	1.6	38
88	The Soils of Egypt. World Soils Book Series, 2019, , .	0.1	11
89	Stressful Environments and Sustainable Soil Management: A Case Study of Kafr El-Sheikh, Egypt. Environment Biodiversity and Soil Security, 2019, 3, 41-50.	0.1	5
90	Nanoparticles: a Novel Approach for Sustainable Agro-productivity. Environment Biodiversity and Soil Security, 2019, 3, 30-40.	0.1	16

#	Article	IF	Citations
91	Soils and Human Creation in the Holy Quran: from Point of View of Soil Science. Environment Biodiversity and Soil Security, 2019, .	0.1	2
92	Nanobiotechnology for Plants. Environment Biodiversity and Soil Security, 2019, .	0.1	0
93	Irrigation and Fertilization Management of Successive Cultivated Sugar Beet and Cotton under Salt-Affected Soil Conditions. Environment Biodiversity and Soil Security, 2019, 3, 103-104.	0.1	2
94	Monitoring Water Quality of some Canals in Delta Region, Egypt. Environment Biodiversity and Soil Security, 2019, 3, 63-70.	0.1	2
95	Exogenous nanosilica improves germination and growth of cucumber by maintaining K+/Na+ ratio under elevated Na+ stress. Plant Physiology and Biochemistry, 2018, 125, 164-171.	2.8	77
96	Uptake of nicotine from discarded cigarette butts – A so far unconsidered path of contamination of plant-derived commodities. Environmental Pollution, 2018, 238, 972-976.	3.7	47
97	Plant Nano-nutrition: Perspectives and Challenges. Environmental Chemistry for A Sustainable World, 2018, , 129-161.	0.3	28
98	Biological Aspects of Selenium and Silicon Nanoparticles in the Terrestrial Environments. , 2018, , 235-264.		12
99	Selenate tolerance and selenium hyperaccumulation in the monocot giant reed (Arundo donax), a biomass crop plant with phytoremediation potential. Environmental Science and Pollution Research, 2018, 25, 31368-31380.	2.7	11
100	Nanoparticle-Associated Phytotoxicity and Abiotic Stress Under Agroecosystems. , 2018, , 241-268.		7
101	Plant Nutrients and Their Roles Under Saline Soil Conditions. , 2018, , 297-324.		16
102	Nanofertilizers vs. Biofertilizers: New Insights. Environment Biodiversity and Soil Security, 2018, 2, 40-50.	0.1	38
103	Nanomaterials and plant abiotic stress in agroecosystems. Environment Biodiversity and Soil Security, 2018, 2, 50-55.	0.1	14
104	Overview of Selenium Deficiency and Toxicity Worldwide: Affected Areas, Selenium-Related Health Issues, and Case Studies. Plant Ecophysiology, 2017, , 209-230.	1.5	54
105	Selenium fortification induces growth, antioxidant activity, yield and nutritional quality of lettuce in salt-affected soil using foliar and soil applications. Plant and Soil, 2017, 421, 245-258.	1.8	47
106	Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris). Environmental Science and Pollution Research, 2017, 24, 21917-21928.	2.7	89
107	The Rhizosphere and Plant Nutrition Under Climate Change. , 2017, , 275-308.		17
108	Nanoremediation for Sustainable Crop Production. Sustainable Agriculture Reviews, 2017, , 335-363.	0.6	19

#	Article	IF	Citations
109	Enhancing seed germination and seedlings development of common bean (Phaseolus vulgaris) by SiO2 nanoparticles. Egyptian Journal of Soil Science, 2017, .	0.1	6
110	Environmental Nanoremediation under Changing Climate. Environment Biodiversity and Soil Security, 2017, 1, 190-200.	0.1	7
111	Nanoparticles, Soils, Plants and Sustainable Agriculture. Sustainable Agriculture Reviews, 2016, , 283-312.	0.6	50
112	Nanoparticles in Water, Soils and Agriculture. Sustainable Agriculture Reviews, 2016, , 311-358.	0.6	30
113	Selenium and nano-selenium in plant nutrition. Environmental Chemistry Letters, 2016, 14, 123-147.	8.3	146
114	Selenium in Agriculture: Water, Air, Soil, Plants, Food, Animals and Nanoselenium. Environmental Chemistry for A Sustainable World, 2015, , 153-232.	0.3	30
115	Giant reed for selenium phytoremediation under changing climate. Environmental Chemistry Letters, 2015, 13, 359-380.	8.3	29
116	Selenium and its Role in Higher Plants. Environmental Chemistry for A Sustainable World, 2015, , 235-296.	0.3	29
117	Selenium Phytoremediation by Giant Reed. Environmental Chemistry for A Sustainable World, 2015, , 133-198.	0.3	5
118	Copper Uptake Efficiency and Its Distribution Within Bioenergy Grass Giant Reed. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 452-458.	1.3	18
119	Selenium in soils under climate change, implication for human health. Environmental Chemistry Letters, 2015, 13, 1-19.	8.3	77
120	Giant Reed (Arundo donax L.): A Green Technology for Clean Environment. , 2015, , 3-20.		15
121	Selenium and nano-selenium biofortified sprouts using micro-farm systems. , 2015, , 189-190.		3
122	Integrated Nutrient Management and Postharvest of Crops. Sustainable Agriculture Reviews, 2014, , 163-274.	0.6	9
123	Drought risk assessment using remote sensing and GIS techniques. Arabian Journal of Geosciences, 2014, 7, 35-53.	0.6	143
124	Restoring Soil Ecosystems and Biomass Production of Arundo donax L. under Microbial Communities-Depleted Soil. Bioenergy Research, 2014, 7, 268-278.	2.2	17
125	Soil Quality and Plant Nutrition. Sustainable Agriculture Reviews, 2014, , 345-447.	0.6	32
126	Plant Nutrition: From Liquid Medium to Micro-farm. Sustainable Agriculture Reviews, 2014, , 449-508.	0.6	12

#	Article	lF	CITATIONS
127	Selenium and nano-selenium in agroecosystems. Environmental Chemistry Letters, 2014, 12, 495-510.	8.3	108
128	Phytoaccumulation potentials of two biotechnologically propagated ecotypes of Arundo donax in copper-contaminated synthetic wastewater. Environmental Science and Pollution Research, 2014, 21, 7773-7780.	2.7	29
129	Sustainable Agriculture and Climate Changes in Egypt. Sustainable Agriculture Reviews, 2013, , 41-95.	0.6	43
130	Phytoremediation of bauxite-derived red mud by giant reed. Environmental Chemistry Letters, 2013, 11, 295-302.	8.3	60