
Xiande Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/29281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties. Applied Surface Science, 2014, 317, 414-421.	3.1	158
2	Controllable fabrication of CuO nanostructure by hydrothermal method and its properties. Applied Surface Science, 2014, 311, 602-608.	3.1	149
3	Recent Advances in Solid Nanopore/Channel Analysis. Analytical Chemistry, 2018, 90, 577-588.	3.2	112
4	An anti-UV superhydrophobic material with photocatalysis, self-cleaning, self-healing and oil/water separation functions. Nanoscale, 2020, 12, 11455-11459.	2.8	55
5	Nanostructures confined self-assembled in biomimetic nanochannels for enhancing the sensitivity of biological molecules response. Journal of Materials Science: Materials in Electronics, 2018, 29, 19757-19767.	1.1	53
6	Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism. Optical Materials, 2015, 46, 179-185.	1.7	52
7	Synthesis and enhanced photocatalytic property of feather-like Cd-doped CuO nanostructures by hydrothermal method. Applied Surface Science, 2015, 355, 191-196.	3.1	46
8	Structure and photoluminescence properties of Ag-coated ZnO nano-needles. Journal of Alloys and Compounds, 2011, 509, 5765-5768.	2.8	44
9	Preparation of flower-like CdS with SDBS as surfactant by hydrothermal method and its optical properties. Applied Surface Science, 2015, 340, 18-24.	3.1	41
10	High Concentration Substitutional <scp>N</scp> â€Doped <scp>TiO₂</scp> Film: Preparation, Characterization, and Photocatalytic Property. Journal of the American Ceramic Society, 2011, 94, 4078-4083.	1.9	40
11	Synthesis and characterization of carbon modified TiO2 nanotube and photocatalytic activity on methylene blue under sunlight. Applied Surface Science, 2015, 344, 176-180.	3.1	38
12	Micro-arc oxidation of TC4 substrates to fabricate TiO2/YAG:Ce3+ compound films with enhanced photocatalytic activity. Journal of Alloys and Compounds, 2011, 509, L137-L141.	2.8	37
13	Controllable fabrication of nanowire-like CuO film by anodization and its properties. Applied Surface Science, 2015, 349, 636-643.	3.1	33
14	Synthesis of Mg-doped hierarchical ZnO nanostructures via hydrothermal method and their optical properties. Journal of Alloys and Compounds, 2016, 657, 261-267.	2.8	33
15	Facile synthesis and photocatalytic performance of self-assembly CuO microspheres. Superlattices and Microstructures, 2015, 85, 1-6.	1.4	32
16	Controllable preparation of ZnO nanostructure using hydrothermal-electrodeposited method and its properties. Materials Chemistry and Physics, 2015, 153, 266-273.	2.0	25
17	Self-assembled urchin-like ZnO nanostructures fabricated by electrodeposition-hydrothermal method. Journal of Alloys and Compounds, 2016, 665, 62-68.	2.8	22
18	Synthesis and photocatalytic activity of TiO2 nanotubes co-doped by erbium ions. Applied Surface Science, 2015, 328, 115-119.	3.1	21

#	Article	IF	CITATIONS
19	Synthesis, growth mechanism and photocatalytic property of CdS with different kinds of surfactants. New Journal of Chemistry, 2019, 43, 10126-10133.	1.4	18
20	Preparation of g-C3N4 with High Specific Surface Area and Photocatalytic Stability. Journal of Electronic Materials, 2021, 50, 1067-1074.	1.0	18
21	ZnS–ZnO nanocomposites: synthesis, characterization and enhanced photocatatlytic performance. Journal of Materials Science: Materials in Electronics, 2016, 27, 10282-10288.	1.1	15
22	Controllable preparation, growth mechanism and the properties research of ZnO nanocrystal. Superlattices and Microstructures, 2014, 72, 91-101.	1.4	14
23	Effect of Doping Ce Ions on Morphology and Photocatalytic Activity of CuO Nanostructures. Crystal Research and Technology, 2019, 54, 1900033.	0.6	14
24	Preparation of self-assembled hollow microsphere CdS via solvothermal method and its optical properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 9725-9733.	1.1	11
25	Facile preparation of urchin-like ZnO nanostructures and their photocatalytic performance. Ceramics International, 2016, 42, 12409-12413.	2.3	11
26	Synthesis of S-doped hierarchical ZnO nanostructures via hydrothermal method and their optical properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 1785-1792.	1.1	11
27	Synthesis and Photocatalytic Properties of Ce-Doped TiO2 Nanotube Arrays via Anodic Oxidation. Journal of Electronic Materials, 2017, 46, 4791-4797.	1.0	11
28	Cu doped ZnO hierarchical nanostructures: morphological evolution and photocatalytic property. Journal of Materials Science: Materials in Electronics, 2019, 30, 2309-2315.	1.1	11
29	Synthesis and photocatalytic mechanism of visible-light-driven Ag/AgBr/(I/S) composites for organic dyes degradation. Optical Materials, 2022, 123, 111947.	1.7	11
30	Modification of kaolinite with alkylimidazolium salts. Journal of Thermal Analysis and Calorimetry, 2014, 118, 133-140.	2.0	10
31	Preparation of dendriticâ€ike CdS by hydrothermal method and its photocatalytic performance. Crystal Research and Technology, 2015, 50, 338-345.	0.6	10
32	Growth and optical properties of hierarchical flower-like ZnO nanostructures. Ceramics International, 2017, 43, 3306-3313.	2.3	10
33	Tunable superamphiphobic surfaces: a platform for naked-eye ATP detection. Analytical and Bioanalytical Chemistry, 2019, 411, 4721-4727.	1.9	10
34	Hydrothermal synthesis of ZnS microspheres with highly effective photocatalytic and antibacterial properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 10237-10243.	1.1	9
35	The Optical and Electrical Performance of CuO Synthesized by Anodic Oxidation Based on Copper Foam. Materials, 2020, 13, 5411.	1.3	9
36	Synthesis of radialâ€like ZnO structure by hydrothermal method with ZnSO ₄ ·7H ₂ O and Zn(CH ₃ COO) ₂ ·2H ₂ O as zinc sources. Crystal Research and Technology, 2015, 50, 414-419.	0.6	8

#	Article	IF	CITATIONS
37	Sol–gel synthesis and photoluminescence properties of a novel Dy3+ activated CaYAl3O7 phosphor. Journal of Materials Science: Materials in Electronics, 2016, 27, 7089-7094.	1.1	8
38	Solution Growth of Two-Dimensional Bi2Se3 Nanosheets for Two-Color All-Optical Switching. Materials, 2017, 10, 1332.	1.3	8
39	Construction of CuO/CdS composite nanostructure for photodegradation of pollutants in sewage. Journal of Materials Science: Materials in Electronics, 2019, 30, 15989-15999.	1.1	8
40	Photocatalytic Performance of Cubic and Hexagonal Phase CdS Synthesized via Different Cd Sources. Journal of Electronic Materials, 2019, 48, 2895-2901.	1.0	8
41	Synthesis, structure, and photoluminescence properties of Ce3+ and Tb3+ doped alkaline-earth silicate Sr2MgSi2O7 phosphors for WLEDs. Journal of Materials Research, 2017, 32, 547-556.	1.2	7
42	Enhanced Photodegradation Activity of Organic Pollutants Contained in Sewage Through Construction of a CuO/Ag Composite Nanostructure. Journal of Electronic Materials, 2020, 49, 2032-2039.	1.0	7
43	ZnO/Er2O3 core–shell nanorod arrays: Synthesis, properties and growth mechanism. Applied Surface Science, 2015, 325, 117-123.	3.1	6
44	Controllable synthesis, characterization of ZnS nanostructured spheres. Journal of Materials Science: Materials in Electronics, 2016, 27, 7167-7173.	1.1	6
45	Controllable synthesis of self-assembled MoS2 hollow spheres for photocatalytic application. Journal of Materials Science: Materials in Electronics, 2018, 29, 753-761.	1.1	6
46	Electrodeposition of ZnO Nanorods with Synergistic Photocatalytic and Self-Cleaning Effects. Journal of Electronic Materials, 2021, 50, 4954-4961.	1.0	6
47	Photocatalytic Degradation of Rhodamine B by TiO ₂ Pillared Illite/Smectite (Ti/(I/S)) under Visibleâ€Light Irradiation. Crystal Research and Technology, 2021, 56, 2100079.	0.6	6
48	Effects of Eu3+ concentration and heat-treatment on photoluminescence properties of Zn1â^'x Eu x Al2O4 phosphors. Journal of Materials Science: Materials in Electronics, 2016, 27, 1840-1846.	1.1	5
49	Comparative Study of Structural and Photocatalytic Properties of M-Doped (MÂ=ÂCe3+, Zn2+, Cu2+) Dendritic-Like CdS. Journal of Electronic Materials, 2017, 46, 1598-1606.	1.0	5
50	Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption. Journal of Electronic Materials, 2018, 47, 5291-5295.	1.0	5
51	Synthesis and Influence Factors Study of 4A Molecular Sieve via Halloysite. Journal of Electronic Materials, 2019, 48, 7756-7761.	1.0	5
52	Fabrication of Both TiO2 Nanostructures and Cysteine-Modified AAO Membranes and Their Application in Chiral Selective Transport of Proteins. Journal of Electronic Materials, 2019, 48, 964-971.	1.0	5
53	CdS structures prepared in AAO nanochannels <i>via</i> different synthesis methods under limited conditions. New Journal of Chemistry, 2020, 44, 64-71.	1.4	5
54	Morphology-controllable synthesis and application of TiO2 nanotube arrays with "photocatalysis and self-cleaning―synergism. New Journal of Chemistry, 2020, 44, 5774-5783.	1.4	5

#	Article	IF	CITATIONS
55	Preparation and photocatalytic activity of carbon coating TiO2 nanotubes. Superlattices and Microstructures, 2016, 89, 252-258.	1.4	4
56	Facile synthesis of urchin-like ZnO nanostructures with enhanced optical properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 1605-1611.	1.1	4
57	Synthesis of Hierarchical Self-Assembled CuO and Their Structure-Enhanced Photocatalytic Performance. Journal of Electronic Materials, 2018, 47, 744-750.	1.0	4
58	Preparation and characterization of ZnO/ZnS core/shell nanocomposites through a simple chemical method. Advanced Composite Materials, 2018, 27, 387-396.	1.0	4
59	Eu3+-doped Sr2(Al1â^'xMgx)(Al1â^'xSi1+x)O7 phosphors: electronic, crystal structures and photoluminescence properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 1246-1254.	1.1	4
60	Anodic Oxidation of TC4 Substrate to Synthesize Ce-Doped TiO2 Nanotube Arrays with Enhanced Photocatalytic Performance. Journal of Electronic Materials, 2021, 50, 3276-3282.	1.0	4
61	A multifunctional composite membrane with photocatalytic, self-cleaning, oil/water separation and antibacterial properties. Nanotechnology, 2022, 33, 355703.	1.3	4
62	Synthesis, characterization and catalytic performances of S2O8 2Ⱂ/Al-x wt%Ce–Zn–O solid acid catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 331-341.	0.8	3
63	The photocatalytic performance research of La2O3 modified TiO2 nanotube arrays. Journal of Materials Science: Materials in Electronics, 2016, 27, 7073-7078.	1.1	3
64	New thoughts into the fabrication of ZnO nanoparticles: confined growth in the channels of AAO membrane and its formation mechanisms. Journal of Materials Science: Materials in Electronics, 2017, 28, 14163-14169.	1.1	3
65	Synthesis of CdS@ZnO nanocomposites with wide visible light absorption range. Journal of Materials Science: Materials in Electronics, 2020, 31, 17624-17632.	1.1	3
66	Optical properties of flowerâ€like CdS prepared by a hydrothermal method with SDBS as surfactant. Crystal Research and Technology, 2015, 50, 658-667.	0.6	2
67	Preparation of controlled ZnO nanostructures and their optical properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 7227-7232.	1.1	2
68	Synthesis and photo-catalytic property of TiO2 nanotube arrays/ZnS. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	2
69	Photoluminescence and Photocatalytic Activity of ZnO/Mn Hierarchical Structures. Journal of Electronic Materials, 2017, 46, 347-353.	1.0	2
70	Ce3+-doped silicate-based down-conversion phosphors: investigation on synthesis, structure and photoluminescence properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 5573-5578.	1.1	2
71	Synthesis and photocatalytic mechanism of visible-light-driven AgBr/g-C3N4 composite. Journal of Materials Science: Materials in Electronics, 2021, 32, 6158-6167.	1.1	2
72	Synthesis of AgBr/TiO2/(I/S) composite and its enhanced photocatalytic performance to rhodamine B. Journal of Materials Science: Materials in Electronics, 2021, 32, 22868-22878.	1.1	2

#	Article	IF	CITATIONS
73	Synthesis, characterization and catalytic properties of S2O8 2â^'/x wt% Ce–Al–Fe–O solid acid catalysts in the esterification reaction of acetic acid with n-butanol. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 407-416.	0.8	1
74	Facile synthesis of ZnS-ZnO nanocomposites for enhanced photocatalytic activity. Materials Research Innovations, 2017, 21, 74-78.	1.0	1
75	Confined assembly of TiO2 nanostructures in the nanochannels of AAO membrane. Journal of Materials Science: Materials in Electronics, 2018, 29, 4933-4939.	1.1	1
76	C@ZnO Self-assembly Composite Nanostructure with a Strong Absorption Capacity in UV–Visible Light and Its Optical Properties. Journal of Electronic Materials, 2019, 48, 7263-7269.	1.0	1
77	Controllable Synthesis of MoS2@TiO2 Composite Nanostructure by Anodic Oxidation-Hydrothermal Technique. Journal of Electronic Materials, 2019, 48, 2144-2151.	1.0	1
78	The Composite of CuO/Diatomaceous Shale Prepared by Hydrothermal Method and Their Photocatalytic Properties. Crystal Research and Technology, 2020, 55, 1900166.	0.6	1
79	Electrodeposition and Photocatalytic Performance of Self-Assembled Tulip Flower/Mulberry-Like CuO Nanostructures. Journal of Electronic Materials, 2020, 49, 1482-1488.	1.0	1
80	Thermal Oxidation and SILAR Method to Prepare CuO/CdS Composite Nanostructure and Its Enhanced Photocatalytic Properties. Journal of Electronic Materials, 2021, 50, 4762-4769.	1.0	1
81	Preparation of hierarchical CdS structures and effect of sodium dodecyl benzene sulfonate (SDBS) on the morphologies. Journal of Materials Science: Materials in Electronics, 2016, 27, 6750-6756.	1.1	0
82	Enhancing Photocatalytic Activity on (MnO@TNTAs):Mn2+ with a Hierarchical Sandwich-Like Nanostructure via a Two-Step Procedure. Journal of Electronic Materials, 2018, 47, 2800-2807.	1.0	0
83	The Construction of a ZnO/CdS Heterostructure with Synergistic Enhanced Effect in Photocatalytic and Self-Cleaning Performance. Journal of Electronic Materials, 2021, 50, 129-137.	1.0	0
84	Synthesis of narrow-band red-emitting SrLiAl3N4:Eu2+ phosphor and the study of its influencing factors on luminescence performance. Functional Materials Letters, 2021, 14, 2151035.	0.7	0