Liqun Qi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2927784/liqun-qi-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

96 12,094 325 53 h-index g-index citations papers 1.6 13,480 7.13 341 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
325	ST-SVD factorization and s-diagonal tensors. <i>Communications in Mathematical Sciences</i> , 2022 , 20, 597-6	10	1
324	The C-eigenvalue of third order tensors and its application in crystals. <i>Journal of Industrial and Management Optimization</i> , 2021 ,	2	1
323	SLRTA: A sparse and low-rank tensor-based approach to internet traffic anomaly detection. <i>Neurocomputing</i> , 2021 , 434, 295-314	5.4	2
322	A Barzilai B orwein Gradient Algorithm for Spatio-Temporal Internet Traffic Data Completion via Tensor Triple Decomposition. <i>Journal of Scientific Computing</i> , 2021 , 88, 1	2.3	0
321	T-Jordan Canonical Form and T-Drazin Inverse Based on the T-Product. <i>Communications on Applied Mathematics and Computation</i> , 2021 , 3, 201-220	0.9	18
320	Spectral norm and nuclear norm of a third order tensor. <i>Journal of Industrial and Management Optimization</i> , 2021 ,	2	4
319	Biquadratic tensors, biquadratic decompositions, and norms of biquadratic tensors. <i>Frontiers of Mathematics in China</i> , 2021 , 16, 171-185	0.8	
318	CAMC Focused Section on Tensor Computation. <i>Communications on Applied Mathematics and Computation</i> , 2021 , 3, 199-199	0.9	
317	Triple Decomposition and Tensor Recovery of Third Order Tensors. SIAM Journal on Matrix Analysis and Applications, 2021, 42, 299-329	1.5	2
316	Tensor Bernstein concentration inequalities with an application to sample estimators for high-order moments. <i>Frontiers of Mathematics in China</i> , 2020 , 15, 367-384	0.8	0
315	Analytical expressions of copositivity for fourth-order symmetric tensors. <i>Analysis and Applications</i> , 2020 , 1-22	2.5	2
314	Elasticity M-tensors and the strong ellipticity condition. <i>Applied Mathematics and Computation</i> , 2020 , 373, 124982	2.7	4
313	Generalized tensor function via the tensor singular value decomposition based on the T-product. <i>Linear Algebra and Its Applications</i> , 2020 , 590, 258-303	0.9	31
312	Further study on tensor absolute value equations. Science China Mathematics, 2020, 63, 2137-2156	0.8	9
311	Hypergraph Clustering Using a New Laplacian Tensor with Applications in Image Processing. <i>SIAM Journal on Imaging Sciences</i> , 2020 , 13, 1157-1178	1.9	3
310	Stationary Probability Vectors of Higher-Order Two-Dimensional Symmetric Transition Probability Tensors. <i>Asia-Pacific Journal of Operational Research</i> , 2020 , 37, 2040019	0.8	3
309	Expected residual minimization method for monotone stochastic tensor complementarity problem. <i>Computational Optimization and Applications</i> , 2020 , 77, 871-896	1.4	3

(2018-2020)

308	Modified gradient dynamic approach to the tensor complementarity problem. <i>Optimization Methods and Software</i> , 2020 , 35, 394-415	1.3	17	
307	Birkhoff-von Neumann theorem and decomposition for doubly stochastic tensors. <i>Linear Algebra and Its Applications</i> , 2019 , 583, 119-133	0.9	6	
306	Two irreducible functional bases of isotropic invariants of a fourth-order three-dimensional symmetric and traceless tensor. <i>Mathematics and Mechanics of Solids</i> , 2019 , 24, 3092-3102	2.3	1	
305	Irreducible function bases of isotropic invariants of a third order three-dimensional symmetric and traceless tensor. <i>Frontiers of Mathematics in China</i> , 2019 , 14, 1-16	0.8	4	
304	Computing the Maximal Violation of Bell Inequalities for Multipartite Qubit via Partially Symmetric Tensor. <i>International Journal of Theoretical Physics</i> , 2019 , 58, 1161-1171	1.1		
303	On semi-definiteness and minimal H-eigenvalue of a symmetric space tensor using nonnegative polynomial optimization techniques. <i>Signal Processing: Image Communication</i> , 2019 , 73, 3-11	2.8		
302	Tensor Complementarity Problems Part III: Applications. <i>Journal of Optimization Theory and Applications</i> , 2019 , 183, 771-791	1.6	25	
301	Tensor Complementarity ProblemsPart II: Solution Methods. <i>Journal of Optimization Theory and Applications</i> , 2019 , 183, 365-385	1.6	29	
300	Tensor Complementarity ProblemsPart I: Basic Theory. <i>Journal of Optimization Theory and Applications</i> , 2019 , 183, 1-23	1.6	33	
299	Test of copositive tensors. Journal of Industrial and Management Optimization, 2019, 15, 881-891	2	9	
298	Stochastic (R_0) tensors to stochastic tensor complementarity problems. <i>Optimization Letters</i> , 2019 , 13, 261-279	1.1	17	
297	High performance hardware architecture for singular spectrum analysis of Hankel tensors. <i>Microprocessors and Microsystems</i> , 2019 , 64, 120-127	2.4	2	
296	Nonnegative tensors revisited: plane stochastic tensors. <i>Linear and Multilinear Algebra</i> , 2019 , 67, 1364-1	139/1	10	
295	A Globally and Quadratically Convergent Algorithm for Solving Multilinear Systems with ({{mathcal {M}}})-tensors. <i>Journal of Scientific Computing</i> , 2018 , 76, 1718-1741	2.3	29	
294	How entangled can a multi-party system possibly be?. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2018 , 382, 1465-1471	2.3	12	
293	Global Uniqueness and Solvability of Tensor Variational Inequalities. <i>Journal of Optimization Theory and Applications</i> , 2018 , 177, 137-152	1.6	25	
292	Positive definiteness of paired symmetric tensors and elasticity tensors. <i>Journal of Computational and Applied Mathematics</i> , 2018 , 338, 22-43	2.4	18	
291	Column sufficient tensors and tensor complementarity problems. <i>Frontiers of Mathematics in China</i> , 2018 , 13, 255-276	0.8	39	

29 0	Octupolar tensors for liquid crystals. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 02520	06	20
289	Some properties and applications of odd-colorable r-hypergraphs. <i>Discrete Applied Mathematics</i> , 2018 , 236, 446-452	1	1
288	Tensor Eigenvalues and Their Applications. Advances in Mechanics and Mathematics, 2018,	0.2	62
287	A semidefinite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test. <i>Numerical Linear Algebra With Applications</i> , 2018 , 25, e2125	1.6	32
286	Spectral radii of two kinds of uniform hypergraphs. <i>Applied Mathematics and Computation</i> , 2018 , 338, 661-668	2.7	8
285	Geometric measures of entanglement in multipartite pure states via complex-valued neural networks. <i>Neurocomputing</i> , 2018 , 313, 25-38	5.4	9
284	Tensor absolute value equations. Science China Mathematics, 2018, 61, 1695-1710	0.8	29
283	An irreducible function basis of isotropic invariants of a third order three-dimensional symmetric tensor. <i>Journal of Mathematical Physics</i> , 2018 , 59, 081703	1.2	5
282	On {0,1} CP tensors and CP pseudographs. Linear Algebra and Its Applications, 2018, 557, 287-306	0.9	
281	\$M\$-eigenvalues of the Riemann curvature tensor. <i>Communications in Mathematical Sciences</i> , 2018 , 16, 2301-2315	1	5
280	A quadratic penalty method for hypergraph matching. Journal of Global Optimization, 2018, 70, 237-259	1.5	4
279	A fast algorithm for the spectral radii of weakly reducible nonnegative tensors. <i>Numerical Linear Algebra With Applications</i> , 2018 , 25, e2134	1.6	27
278	Copositive tensor detection and its applications in physics and hypergraphs. <i>Computational Optimization and Applications</i> , 2018 , 69, 133-158	1.4	28
277	Computing the p-Spectral Radii of Uniform Hypergraphs with Applications. <i>Journal of Scientific Computing</i> , 2018 , 75, 1-25	2.3	7
276	Isotropic polynomial invariants of Hall tensor. <i>Applied Mathematics and Mechanics (English Edition)</i> , 2018 , 39, 1845-1856	3.2	4
275	A Note on the Multidimensional Moment Problem 2018 , 1075-1079		
274	P-tensors, P0-tensors, and their applications. <i>Linear Algebra and Its Applications</i> , 2018 , 555, 336-354	0.9	45
273	The sparsest solutions to Z-tensor complementarity problems. <i>Optimization Letters</i> , 2017 , 11, 471-482	1.1	84

272	Programmable criteria for strong (mathcal {H})-tensors. <i>Numerical Algorithms</i> , 2017 , 74, 199-221	2.1	19
271	The first few unicyclic and bicyclic hypergraphs with largest spectral radii. <i>Linear Algebra and Its Applications</i> , 2017 , 527, 141-162	0.9	18
270	The Adjacency and Signless Laplacian Spectra of Cored Hypergraphs and Power Hypergraphs. <i>Journal of the Operations Research Society of China</i> , 2017 , 5, 27-43	1.3	7
269	Iterative algorithms for computing US- and U-eigenpairs of complex tensors. <i>Journal of Computational and Applied Mathematics</i> , 2017 , 317, 547-564	2.4	8
268	Strictly semi-positive tensors and the boundedness of tensor complementarity problems. <i>Optimization Letters</i> , 2017 , 11, 1407-1426	1.1	33
267	Pseudo-spectra theory of tensors and tensor polynomial eigenvalue problems. <i>Linear Algebra and Its Applications</i> , 2017 , 533, 536-572	0.9	5
266	The Fiedler Vector of a Laplacian Tensor for Hypergraph Partitioning. <i>SIAM Journal of Scientific Computing</i> , 2017 , 39, A2508-A2537	2.6	11
265	Copositivity Detection of Tensors: Theory and Algorithm. <i>Journal of Optimization Theory and Applications</i> , 2017 , 174, 746-761	1.6	30
264	Improved approximation results on standard quartic polynomial optimization. <i>Optimization Letters</i> , 2017 , 11, 1767-1782	1.1	4
263	Formulating an n-person noncooperative game as a tensor complementarity problem. <i>Computational Optimization and Applications</i> , 2017 , 66, 557-576	1.4	79
262	Inheritance properties and sum-of-squares decomposition of Hankel tensors: theory and algorithms. <i>BIT Numerical Mathematics</i> , 2017 , 57, 169-190	1.7	8
261	Tensor Analysis 2017 ,		132
2 60	Regularly decomposable tensors and classical spin states. <i>Communications in Mathematical Sciences</i> , 2017 , 15, 1651-1665	1	3
259	Eigenvalue analysis of constrained minimization problem for homogeneous polynomial. <i>Journal of Global Optimization</i> , 2016 , 64, 563-575	1.5	20
258	Completely Positive Tensors: Properties, Easily Checkable Subclasses, and Tractable Relaxations. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2016 , 37, 1675-1698	1.5	14
257	Comon's Conjecture, Rank Decomposition, and Symmetric Rank Decomposition of Symmetric Tensors. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2016 , 37, 1719-1728	1.5	12
256	Computing Eigenvalues of Large Scale Sparse Tensors Arising from a Hypergraph. <i>SIAM Journal of Scientific Computing</i> , 2016 , 38, A3618-A3643	2.6	9
255	Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. <i>Physical Review A</i> , 2016 , 93,	2.6	26

254	A Tensor Analogy of Yuan Theorem of the Alternative and Polynomial Optimization with Sign structure. <i>Journal of Optimization Theory and Applications</i> , 2016 , 168, 446-474	1.6	15
253	On the cone eigenvalue complementarity problem for higher-order tensors. <i>Computational Optimization and Applications</i> , 2016 , 63, 143-168	1.4	34
252	Higher-degree eigenvalue complementarity problems for tensors. <i>Computational Optimization and Applications</i> , 2016 , 64, 149-176	1.4	15
251	Spectral directed hypergraph theory via tensors. <i>Linear and Multilinear Algebra</i> , 2016 , 64, 780-794	0.7	7
250	A semismooth Newton method for tensor eigenvalue complementarity problem. <i>Computational Optimization and Applications</i> , 2016 , 65, 109-126	1.4	15
249	Tensor Complementarity Problem and Semi-positive Tensors. <i>Journal of Optimization Theory and Applications</i> , 2016 , 169, 1069-1078	1.6	76
248	Positive-Definite Tensors to Nonlinear Complementarity Problems. <i>Journal of Optimization Theory and Applications</i> , 2016 , 168, 475-487	1.6	85
247	The extremal spectral radii of (k)-uniform supertrees. <i>Journal of Combinatorial Optimization</i> , 2016 , 32, 741-764	0.9	49
246	Further results on Cauchy tensors and Hankel tensors. <i>Applied Mathematics and Computation</i> , 2016 , 275, 50-62	2.7	8
245	Computing Extreme Eigenvalues of Large Scale Hankel Tensors. <i>Journal of Scientific Computing</i> , 2016 , 68, 716-738	2.3	15
244	Perturbation bounds of tensor eigenvalue and singular value problems with even order. <i>Linear and Multilinear Algebra</i> , 2016 , 64, 622-652	0.7	8
243	The proof of a conjecture on largest Laplacian and signless Laplacian H-eigenvalues of uniform hypergraphs. <i>Linear Algebra and Its Applications</i> , 2016 , 490, 18-30	0.9	12
242	Circulant tensors with applications to spectral hypergraph theory and stochastic process. <i>Journal of Industrial and Management Optimization</i> , 2016 , 12, 1227-1247	2	12
241	Positive semi-definiteness of generalized anti-circulant tensors. <i>Communications in Mathematical Sciences</i> , 2016 , 14, 941-952	1	3
240	SOS tensor decomposition: Theory and applications. <i>Communications in Mathematical Sciences</i> , 2016 , 14, 2073-2100	1	13
239	A Necessary and Sufficient Condition for Existence of a Positive Perron Vector. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2016 , 37, 1747-1770	1.5	6
238	Spectral properties of odd-bipartite Z-tensors and their absolute tensors. <i>Frontiers of Mathematics in China</i> , 2016 , 11, 539-556	0.8	2
237	Positive semi-definiteness and sum-of-squares property of fourth order four dimensional Hankel tensors. <i>Journal of Computational and Applied Mathematics</i> , 2016 , 302, 356-368	2.4	10

(2014-2016)

{0,1} completely positive tensors and multi-hypergraphs. <i>Linear Algebra and Its Applications</i> , 2016 , 510, 110-123	0.9	5	
Fast Hankel tensorMector product and its application to exponential data fitting. <i>Numerical Linear Algebra With Applications</i> , 2015 , 22, 814-832	1.6	32	
Some new trace formulas of tensors with applications in spectral hypergraph theory. <i>Linear and Multilinear Algebra</i> , 2015 , 63, 971-992	0.7	15	
Necessary and sufficient conditions for copositive tensors. <i>Linear and Multilinear Algebra</i> , 2015 , 63, 120	-1 3/ 1	35	
Linear operators and positive semidefiniteness of symmetric tensor spaces. <i>Science China Mathematics</i> , 2015 , 58, 197-212	0.8	12	
The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph. <i>Linear Algebra and Its Applications</i> , 2015 , 469, 1-27	0.9	40	
The Laplacian of a uniform hypergraph. Journal of Combinatorial Optimization, 2015, 29, 331-366	0.9	38	
A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map. <i>Journal of Global Optimization</i> , 2015 , 61, 627-641	1.5	37	
MB-tensors and MB0-tensors. <i>Linear Algebra and Its Applications</i> , 2015 , 484, 141-153	0.9	17	
Three dimensional strongly symmetric circulant tensors. <i>Linear Algebra and Its Applications</i> , 2015 , 482, 207-220	0.9	4	
Properties of Some Classes of Structured Tensors. <i>Journal of Optimization Theory and Applications</i> , 2015 , 165, 854-873	1.6	95	
Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. <i>Journal of Industrial and Management Optimization</i> , 2015 , 11, 1263-1274	2	33	
Hankel tensors: Associated Hankel matrices and Vandermonde decomposition. <i>Communications in Mathematical Sciences</i> , 2015 , 13, 113-125	1	32	
An alternating structured trust region algorithm for separable optimization problems with nonconvex constraints. <i>Computational Optimization and Applications</i> , 2014 , 57, 365-386	1.4	3	
Properties and methods for finding the best rank-one approximation to higher-order tensors. <i>Computational Optimization and Applications</i> , 2014 , 58, 105-132	1.4	3	
Approximation Bounds for Trilinear and Biquadratic Optimization Problems Over Nonconvex Constraints. <i>Journal of Optimization Theory and Applications</i> , 2014 , 163, 841-858	1.6	2	
Positive eigenvalue-eigenvector of nonlinear positive mappings. <i>Frontiers of Mathematics in China</i> , 2014 , 9, 181-199	0.8	6	
The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph. <i>Discrete Applied Mathematics</i> , 2014 , 169, 140-151	1	53	
	Fast Hankel tensoriuctor product and its application to exponential data fitting. Numerical Linear Algebra With Applications, 2015, 22, 814-832 Some new trace formulas of tensors with applications in spectral hypergraph theory. Linear and Multilinear Algebra, 2015, 63, 971-992 Necessary and sufficient conditions for copositive tensors. Linear and Multilinear Algebra, 2015, 63, 120 Linear operators and positive semidefiniteness of symmetric tensor spaces. Science China Mathematics, 2015, 58, 197-212 The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph. Linear Algebra and Its Applications, 2015, 469, 1-27 The Laplacian of a uniform hypergraph. Journal of Combinatorial Optimization, 2015, 29, 331-366 A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map. Journal of Global Optimization, 2015, 61, 627-641 MB-tensors and MB0-tensors. Linear Algebra and Its Applications, 2015, 484, 141-153 Three dimensional strongly symmetric circulant tensors. Linear Algebra and Its Applications, 2015, 482, 207-220 Properties of Some Classes of Structured Tensors. Journal of Optimization Theory and Applications, 2015, 165, 854-873 Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. Journal of Industrial and Management Optimization, 2015, 11, 1263-1274 Hankel tensors: Associated Hankel matrices and Vandermonde decomposition. Communications in Mathematical Sciences, 2015, 13, 113-125 An alternating structured trust region algorithm for separable optimization problems with nonconvex constraints. Computational Optimization and Applications, 2014, 57, 365-386 Properties and methods for finding the best rank-one approximation to higher-order tensors. Computational Optimization and Applications, 2014, 58, 105-132 Approximation Bounds for Trilinear and Biquadratic Optimization Problems Over Nonconvex Constraints. Journal of Optimization Theory and Applications, 2014, 163, 841-858 Positive eigenvalue-eigen	Fast Hankel tensor@ector product and its application to exponential data fitting. Numerical Linear Algebra With Applications, 2015, 22, 814-832 Some new trace formulas of tensors with applications in spectral hypergraph theory. Linear and Multilinear Algebra, 2015, 63, 971-992 Necessary and sufficient conditions for copositive tensors. Linear and Multilinear Algebra, 2015, 63, 120-135 Linear operators and positive semidefiniteness of symmetric tensor spaces. Science China Mathematics, 2015, 58, 197-212 The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph. Linear Algebra and Its Applications, 2015, 469, 1-27 The Laplacian of a uniform hypergraph. Journal of Combinatorial Optimization, 2015, 29, 331-366 A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map. Journal of Global Optimization, 2015, 61, 627-641 MB-tensors and MB0-tensors. Linear Algebra and Its Applications, 2015, 484, 141-153 Oppositive definiteness and semi-definiteness of even order symmetric Cauchy tensors. Journal of Industrial and Management Optimization, 2015, 11, 1263-1274 Hankel tensors: Associated Hankel matrices and Vandermonde decomposition. Communications in Mathematical Sciences, 2015, 13, 113-125 An alternating structured trust region algorithm for separable optimization problems with nonconvex constraints. Computational Optimization and Applications, 2014, 57, 365-386 14 Properties and methods for finding the best rank-one approximation to higher-order tensors. Computational Optimization and Applications, 2014, 58, 105-132 Approximation Bounds for Trilinear and Biquadratic Optimization Problems Over Nonconvex Constraints. Journal of Optimization Theory and Applications, 2014, 163, 841-858 Positive eigenvalue-eigenvector of nonlinear positive mappings. Frontiers of Mathematics in China, 2014, 9, 181-199 The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian	Fast Hankel tensor©ector product and its application to exponential data fitting. Numerical Linear Algebra With Applications, 2015, 22, 814-832 Some new trace formulas of tensors with applications in spectral hypergraph theory. Linear and Multillinear Algebra, 2015, 63, 971-992 Necessary and sufficient conditions for copositive tensors. Linear and Multillinear Algebra, 2015, 63, 120-133 Linear operators and positive semidefiniteness of symmetric tensor spaces. Science China Mathematics, 2015, 58, 197-212 The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph. Linear Algebra and its Applications, 2015, 469, 1-27 The Laplacian of a uniform hypergraph. Journal of Combinatorial Optimization, 2015, 29, 331-366 A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map. Journal of Global Optimization, 2015, 61, 627-641 Three dimensional strongly symmetric circulant tensors. Linear Algebra and Its Applications, 2015, 484, 141-153 O.9 17 Three dimensional strongly symmetric circulant tensors. Linear Algebra and Its Applications, 2015, 482, 207-220 Properties of Some Classes of Structured Tensors. Journal of Optimization Theory and Applications, 2015, 15, 854-873 Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. Journal of Mathematical Sciences, 2015, 13, 113-125 An alternating structured trust region algorithm for separable optimization problems with nonconvex constraints. Computational Optimization and Applications, 2014, 57, 365-386 Properties and methods for finding the best rank one approximation to higher-order tensors. Approximation Bounds for Trilinear and Biquadratic Optimization Problems Over Nonconvex Constraints. Journal of Optimization Theory and Applications, 2014, 18, 841-858 Positive eigenvalue-eigenvector of nonlinear positive mappings. Frontiers of Mathematics in China, 2014, 9, 181-199 The eigenvectors associated with the zero eigenvalues of the Laplacian and signless

218	An even order symmetric B tensor is positive definite. <i>Linear Algebra and Its Applications</i> , 2014 , 457, 303	3-3.92	57
217	Convergence of a second order Markov chain. Applied Mathematics and Computation, 2014, 241, 183-19	2 2.7	14
216	The E-eigenvectors of tensors. <i>Linear and Multilinear Algebra</i> , 2014 , 62, 1388-1402	0.7	7
215	Geometric Measure of Entanglement and U-Eigenvalues of Tensors. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2014 , 35, 73-87	1.5	27
214	\$M\$-Tensors and Some Applications. SIAM Journal on Matrix Analysis and Applications, 2014, 35, 437-45	2 1.5	161
213	Nonnegative Tensor Factorization, Completely Positive Tensors, and a Hierarchical Elimination Algorithm. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2014 , 35, 1227-1241	1.5	43
212	Infinite and finite dimensional Hilbert tensors. Linear Algebra and Its Applications, 2014, 451, 1-14	0.9	33
211	Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian H-eigenvalues. <i>Linear Algebra and Its Applications</i> , 2014 , 443, 215-227	0.9	29
2 10	Space tensor conic programming. Computational Optimization and Applications, 2014, 59, 307-319	1.4	3
209	Nonmonotone Barzilai B orwein Gradient Algorithm for (ell _{1})-Regularized Nonsmooth Minimization in Compressive Sensing. <i>Journal of Scientific Computing</i> , 2014 , 61, 17-41	2.3	12
208	Strictly nonnegative tensors and nonnegative tensor partition. Science China Mathematics, 2014, 57, 18	1പ് 9 5	49
207	H+-eigenvalues of Laplacian and signless Laplacian tensors. <i>Communications in Mathematical Sciences</i> , 2014 , 12, 1045-1064	1	83
206	Semi-infinite programming method for optimal power flow with transient stability and variable clearing time of faults. <i>Journal of Global Optimization</i> , 2013 , 55, 813-830	1.5	1
205	Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming. <i>Journal of Optimization Theory and Applications</i> , 2013 , 158, 717-738	1.6	17
204	A successive approximation method for quantum separability. <i>Frontiers of Mathematics in China</i> , 2013 , 8, 1275-1293	0.8	6
203	l k,s-Singular values and spectral radius of rectangular tensors. <i>Frontiers of Mathematics in China</i> , 2013 , 8, 63-83	0.8	5
202	Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor. <i>Frontiers of Mathematics in China</i> , 2013 , 8, 155-168	0.8	15
201	M-tensors and nonsingularM-tensors. <i>Linear Algebra and Its Applications</i> , 2013 , 439, 3264-3278	0.9	166

(2013-2013)

200	The solution methods for the largest eigenvalue (singular value) of nonnegative tensors and convergence analysis. <i>Linear Algebra and Its Applications</i> , 2013 , 439, 3713-3733	0.9	12
199	A survey on the spectral theory of nonnegative tensors. <i>Numerical Linear Algebra With Applications</i> , 2013 , 20, 891-912	1.6	71
198	Spectral Properties of Positively Homogeneous Operators Induced by Higher Order Tensors. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2013 , 34, 1581-1595	1.5	40
197	The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. <i>Numerical Linear Algebra With Applications</i> , 2013 , 20, 1001-1029	1.6	63
196	On the largest eigenvalue of a symmetric nonnegative tensor. <i>Numerical Linear Algebra With Applications</i> , 2013 , 20, 913-928	1.6	18
195	On determinants and eigenvalue theory of tensors. <i>Journal of Symbolic Computation</i> , 2013 , 50, 508-531	0.8	92
194	Nonnegative Diffusion Orientation Distribution Function. <i>Journal of Mathematical Imaging and Vision</i> , 2013 , 45, 103-113	1.6	30
193	Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues. <i>Linear Algebra and Its Applications</i> , 2013 , 439, 2980-2998	0.9	70
192	Symmetric nonnegative tensors and copositive tensors. <i>Linear Algebra and Its Applications</i> , 2013 , 439, 228-238	0.9	129
191	A Cone Constrained Convex Program: Structure and Algorithms. <i>Journal of the Operations Research Society of China</i> , 2013 , 1, 37-53	1.3	4
190	The E-characteristic polynomial of a tensor of dimension 2. Applied Mathematics Letters, 2013, 26, 225-2	! 3₃1 5	4
189	Convergence of an algorithm for the largest singular value of a nonnegative rectangular tensor. <i>Linear Algebra and Its Applications</i> , 2013 , 438, 959-968	0.9	21
188	Semismoothness of the maximum eigenvalue function of a symmetric tensor and its application. <i>Linear Algebra and Its Applications</i> , 2013 , 438, 813-833	0.9	21
187	On solving a class of linear semi-infinite programming by SDP method. <i>Optimization</i> , 2013 , 1-14	1.2	
186	The dominant eigenvalue of an essentially nonnegative tensor. <i>Numerical Linear Algebra With Applications</i> , 2013 , 20, 929-941	1.6	9
185	Finding the extreme Z-eigenvalues of tensors via a sequential semidefinite programming method. <i>Numerical Linear Algebra With Applications</i> , 2013 , 20, 972-984	1.6	25
184	An active-set projected trust-region algorithm with limited memory BFGS technique for box-constrained nonsmooth equations. <i>Optimization</i> , 2013 , 62, 857-878	1.2	4
183	E-characteristic polynomials of tensors. <i>Communications in Mathematical Sciences</i> , 2013 , 11, 33-53	1	15

182	Semidefinite relaxation approximation for multivariate bi-quadratic optimization with quadratic constraints. <i>Numerical Linear Algebra With Applications</i> , 2012 , 19, 113-131	1.6	9
181	A smoothing SQP method for nonlinear programs with stability constraints arising from power systems. <i>Computational Optimization and Applications</i> , 2012 , 51, 175-197	1.4	1
180	The cubic spherical optimization problems. <i>Mathematics of Computation</i> , 2012 , 81, 1513-1525	1.6	22
179	The Best Rank-1 Approximation of a Symmetric Tensor and Related Spherical Optimization Problems. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2012 , 33, 806-821	1.5	51
178	Algebraic connectivity of an even uniform hypergraph. <i>Journal of Combinatorial Optimization</i> , 2012 , 24, 564-579	0.9	81
177	The existence and uniqueness of eigenvalues for monotone homogeneous mapping pairs. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 2012 , 75, 5283-5293	1.3	3
176	Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor. <i>Numerical Linear Algebra With Applications</i> , 2012 , 19, 830-841	1.6	45
175	Standard bi-quadratic optimization problems and unconstrained polynomial reformulations. <i>Journal of Global Optimization</i> , 2012 , 52, 663-687	1.5	8
174	Smooth and Semismooth Newton Methods for Constrained Approximation and Estimation. <i>Numerical Functional Analysis and Optimization</i> , 2012 , 33, 558-589	1	1
173	Positive definiteness of Diffusion Kurtosis Imaging. <i>Inverse Problems and Imaging</i> , 2012 , 6, 57-75	2.1	22
172	The Best Rank-One Approximation Ratio of a Tensor Space. SIAM Journal on Matrix Analysis and Applications, 2011 , 32, 430-442	1.5	48
171	Semidefinite relaxation bounds for bi-quadratic optimization problems with quadratic constraints. Journal of Global Optimization, 2011 , 49, 293-311	1.5	11
170	A feasible direction method for the semidefinite program with box constraints. <i>Applied Mathematics Letters</i> , 2011 , 24, 1874-1881	3.5	7
169	New ALS Methods With Extrapolating Search Directions and Optimal Step Size for Complex-Valued Tensor Decompositions. <i>IEEE Transactions on Signal Processing</i> , 2011 , 59, 5888-5898	4.8	35
168	Finding a stable solution of a system of nonlinear equations arising from dynamic systems. <i>Journal of Industrial and Management Optimization</i> , 2011 , 7, 497-521	2	2
167	Some results on \$l^k\$-eigenvalues of tensor and related spectral radius. <i>Numerical Algebra, Control and Optimization</i> , 2011 , 1, 381-388	1.7	2
166	Global convergence of a filter-trust-region algorithm for solving nonsmooth equations. <i>International Journal of Computer Mathematics</i> , 2010 , 87, 788-796	1.2	4
165	Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations. <i>SIAM Journal on Optimization</i> , 2010 , 20, 1286-1310	2	71

(2009-2010)

164	Higher Order Positive Semidefinite Diffusion Tensor Imaging. <i>SIAM Journal on Imaging Sciences</i> , 2010 , 3, 416-433	1.9	118
163	Finding the Largest Eigenvalue of a Nonnegative Tensor. <i>SIAM Journal on Matrix Analysis and Applications</i> , 2010 , 31, 1090-1099	1.5	190
162	A NONMONOTONE FILTER BARZILAI-BORWEIN METHOD FOR OPTIMIZATION. <i>Asia-Pacific Journal of Operational Research</i> , 2010 , 27, 55-69	0.8	14
161	Singular values of a real rectangular tensor. <i>Journal of Mathematical Analysis and Applications</i> , 2010 , 370, 284-294	1.1	42
160	A new smoothing Newton-type algorithm for semi-infinite programming. <i>Journal of Global Optimization</i> , 2010 , 47, 133-159	1.5	16
159	Pseudotransient Continuation for Solving Systems of Nonsmooth Equations with Inequality Constraints. <i>Journal of Optimization Theory and Applications</i> , 2010 , 147, 223-242	1.6	2
158	Globally and superlinearly convergent inexact Newton Krylov algorithms for solving nonsmooth equations. <i>Numerical Linear Algebra With Applications</i> , 2010 , 17, 155-174	1.6	3
157	Impulse noise removal by a nonmonotone adaptive gradient method. Signal Processing, 2010, 90, 2891	-2 <u>8.9</u> 7	13
156	A smoothing method for solving portfolio optimization with CVaR and applications in allocation of generation asset. <i>Applied Mathematics and Computation</i> , 2010 , 216, 1723-1740	2.7	35
155	A nonmonotone globalization algorithm with preconditioned gradient path for unconstrained optimization. <i>Applied Mathematics and Computation</i> , 2010 , 217, 4257-4264	2.7	
154	Worst-case CVaR based portfolio optimization models with applications to scenario planning. <i>Optimization Methods and Software</i> , 2009 , 24, 933-958	1.3	14
153	A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. <i>Numerical Linear Algebra With Applications</i> , 2009 , 16, 589-601	1.6	72
152	Z-eigenvalue methods for a global polynomial optimization problem. <i>Mathematical Programming</i> , 2009 , 118, 301-316	2.1	105
151	Principal invariants and inherent parameters of diffusion kurtosis tensors. <i>Journal of Mathematical Analysis and Applications</i> , 2009 , 349, 165-180	1.1	27
150	On Nonmonotone Chambolle Gradient Projection Algorithms for Total Variation Image Restoration. <i>Journal of Mathematical Imaging and Vision</i> , 2009 , 35, 143-154	1.6	27
149	A smoothing projected Newton-type algorithm for semi-infinite programming. <i>Computational Optimization and Applications</i> , 2009 , 42, 1-30	1.4	22
148	Computing power system parameters to maximize the small signal stability margin based on min-max models. <i>Optimization and Engineering</i> , 2009 , 10, 465-476	2.1	3
147	Conditions for Strong Ellipticity of Anisotropic Elastic Materials. <i>Journal of Elasticity</i> , 2009 , 97, 1-13	1.5	53

146	Global Error Bound for the Generalized Linear Complementarity Problem over a Polyhedral Cone. Journal of Optimization Theory and Applications, 2009 , 142, 417-429	1.6	19
145	Shape-Preserving Interpolation and Smoothing for Options Market Implied Volatility. <i>Journal of Optimization Theory and Applications</i> , 2009 , 142, 243-266	1.6	6
144	Conditions for strong ellipticity and M-eigenvalues. Frontiers of Mathematics in China, 2009, 4, 349-364	0.8	50
143	Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study. <i>NeuroImage</i> , 2009 , 45, 386-92	7.9	209
142	Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. <i>NeuroImage</i> , 2008 , 42, 122-34	7.9	202
141	An Eigenvalue Method for Testing Positive Definiteness of a Multivariate Form. <i>IEEE Transactions on Automatic Control</i> , 2008 , 53, 1096-1107	5.9	97
140	Projected Pseudotransient Continuation. SIAM Journal on Numerical Analysis, 2008, 46, 3071-3083	2.4	20
139	Extreme diffusion values for non-Gaussian diffusions. <i>Optimization Methods and Software</i> , 2008 , 23, 703	B- 7 .36	5
138	Available Transfer Capability Calculation Using a Smoothing Pointwise Maximum Function. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2008 , 55, 462-474	3.9	9
137	A new class of quasi-Newton updating formulas. <i>Optimization Methods and Software</i> , 2008 , 23, 237-249	1.3	3
136	Global convergence of the Polak-Ribifle-Polyak conjugate gradient method with an Armijo-type inexact line search for nonconvex unconstrained optimization problems. <i>Mathematics of Computation</i> , 2008 , 77, 2173-2193	1.6	36
135	Advanced MR diffusion characterization of neural tissue using directional diffusion kurtosis analysis. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2008 , 2008, 3941-4	0.9	11
134	The Convergence of a Levenberg Marquardt Method for Nonlinear Inequalities. <i>Numerical Functional Analysis and Optimization</i> , 2008 , 29, 687-716	1	12
133	The SC1 property of an expected residual function arising from stochastic complementarity problems. <i>Operations Research Letters</i> , 2008 , 36, 456-460	1	30
132	A semi-infinite programming algorithm for solving optimal power flow with transient stability constraints. <i>Journal of Computational and Applied Mathematics</i> , 2008 , 217, 432-447	2.4	21
131	D-eigenvalues of diffusion kurtosis tensors. <i>Journal of Computational and Applied Mathematics</i> , 2008 , 221, 150-157	2.4	97
130	On the Convergence of Decoupled Optimal Power Flow Methods. <i>Numerical Functional Analysis and Optimization</i> , 2007 , 28, 467-485	1	
129	On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors. Numerical Linear Algebra With Applications, 2007, 14, 503-519	1.6	28

128	On almost smooth functions and piecewise smooth functions. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 2007 , 67, 773-794	1.3	18
127	Eigenvalues and invariants of tensors. <i>Journal of Mathematical Analysis and Applications</i> , 2007 , 325, 136	53 <u>r.1</u> 137	7 147
126	On Semismooth Newton Methods for Total Variation Minimization. <i>Journal of Mathematical Imaging and Vision</i> , 2007 , 27, 265-276	1.6	67
125	Numerical multilinear algebra and its applications. <i>Frontiers of Mathematics in China</i> , 2007 , 2, 501-526	0.8	76
124	The degree of the E-characteristic polynomial of an even order tensor. <i>Journal of Mathematical Analysis and Applications</i> , 2007 , 329, 1218-1229	1.1	56
123	A Truncated Projected Newton-Type Algorithm for Large-Scale Semi-infinite Programming. <i>SIAM Journal on Optimization</i> , 2006 , 16, 1137-1154	2	16
122	New quasi-Newton methods for unconstrained optimization problems. <i>Applied Mathematics and Computation</i> , 2006 , 175, 1156-1188	2.7	107
121	New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems. <i>Applied Mathematics and Computation</i> , 2006 , 179, 407-430	2.7	51
120	On the convergence of an inexact Newton-type method. <i>Operations Research Letters</i> , 2006 , 34, 647-652	2 1	8
119	Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines. <i>Journal of Symbolic Computation</i> , 2006 , 41, 1309-1327	0.8	57
118	Some further results on minimum distribution cost flow problems. <i>Journal of Combinatorial Optimization</i> , 2006 , 11, 351	0.9	4
117	The shortest path improvement problems under Hamming distance. <i>Journal of Combinatorial Optimization</i> , 2006 , 12, 351-361	0.9	19
116	Boundedness and Regularity Properties of Semismooth Reformulations of Variational Inequalities. Journal of Global Optimization, 2006 , 35, 343-366	1.5	1
115	Global Convergence of a Robust Smoothing SQP Method for Semi-Infinite Programming. <i>Journal of Optimization Theory and Applications</i> , 2006 , 129, 147-164	1.6	11
114	The Lagrangian Globalization Method for Nonsmooth Constrained Equations. <i>Computational Optimization and Applications</i> , 2006 , 33, 89-109	1.4	11
113	Convergence rate of Newton's method for L 2 spectral estimation. <i>Mathematical Programming</i> , 2006 , 107, 539-546	2.1	4
112	Comments on "Explicit criterion for the positive definiteness of a general quartic form". <i>IEEE Transactions on Automatic Control</i> , 2005 , 50, 416-418	5.9	34
111	A novel neural network for variational inequalities with linear and nonlinear constraints. <i>IEEE Transactions on Neural Networks</i> , 2005 , 16, 1305-17		49

110	Deriving sufficient conditions for global asymptotic stability of delayed neural networks via nonsmooth analysisII. <i>IEEE Transactions on Neural Networks</i> , 2005 , 16, 1701-6		16
109	Eigenvalues of a real supersymmetric tensor. <i>Journal of Symbolic Computation</i> , 2005 , 40, 1302-1324	0.8	760
108	A manufacturing supply chain optimization model for distilling process. <i>Applied Mathematics and Computation</i> , 2005 , 171, 464-485	2.7	6
107	Smoothing Trust Region Methods for Nonlinear Complementarity Problems with P 0-Functions. <i>Annals of Operations Research</i> , 2005 , 133, 99-117	3.2	17
106	Differentiability and semismoothness properties of integral functions and their applications. <i>Mathematical Programming</i> , 2005 , 102, 223-248	2.1	26
105	A Gradient-based Continuous Method for Large-scale Optimization Problems. <i>Journal of Global Optimization</i> , 2005 , 31, 271-286	1.5	9
104	Unconstrained optimization reformulation of the generalized nonlinear complementarity problem and related method. <i>Optimization</i> , 2005 , 54, 563-577	1.2	5
103	An iterative method for solving KKT system of the semi-infinite programming. <i>Optimization Methods and Software</i> , 2005 , 20, 629-643	1.3	26
102	Regularized Newton Methods for Convex Minimization Problems with Singular Solutions. <i>Computational Optimization and Applications</i> , 2004 , 28, 131-147	1.4	30
101	Neurodynamical Optimization. <i>Journal of Global Optimization</i> , 2004 , 28, 175-195	1.5	43
100	Active-Set Projected Trust-Region Algorithm for Box-Constrained Nonsmooth Equations. <i>Journal of Optimization Theory and Applications</i> , 2004 , 120, 601-625	1.6	41
99	No-Arbitrage Interpolation of the Option Price Function and Its Reformulation. <i>Journal of Optimization Theory and Applications</i> , 2004 , 120, 627-649	1.6	17
98	On the Convergence of a Trust-Region Method for Solving Constrained Nonlinear Equations with Degenerate Solutions. <i>Journal of Optimization Theory and Applications</i> , 2004 , 123, 187-211	1.6	35
97	Sub-quadratic convergence of a smoothing Newton algorithm for the P 0 hand monotone LCP. <i>Mathematical Programming</i> , 2004 , 99, 423-441	2.1	53
96	Extrema of a Real Polynomial. <i>Journal of Global Optimization</i> , 2004 , 30, 405-433	1.5	6
95	A Smoothing Newton Method for Semi-Infinite Programming. <i>Journal of Global Optimization</i> , 2004 , 30, 169-194	1.5	37
94	Smooth Convex Approximation to the Maximum Eigenvalue Function. <i>Journal of Global Optimization</i> , 2004 , 30, 253-270	1.5	26
93	Deriving sufficient conditions for global asymptotic stability of delayed neural networks via nonsmooth analysis. <i>IEEE Transactions on Neural Networks</i> , 2004 , 15, 99-109		51

(2002-2004)

92	Global Minimization of Normal Quartic Polynomials Based on Global Descent Directions. <i>SIAM Journal on Optimization</i> , 2004 , 15, 275-302	2	9	
91	A Squared Smoothing Newton Method for Nonsmooth Matrix Equations and Its Applications in Semidefinite Optimization Problems. <i>SIAM Journal on Optimization</i> , 2004 , 14, 783-806	2	43	
90	Multivariate Polynomial Minimization and Its Application in Signal Processing. <i>Journal of Global Optimization</i> , 2003 , 26, 419-433	1.5	43	
89	Semismooth Newton Methods for Solving Semi-Infinite Programming Problems. <i>Journal of Global Optimization</i> , 2003 , 27, 215-232	1.5	41	
88	An SQP-Type Method and Its Application in Stochastic Programs. <i>Journal of Optimization Theory and Applications</i> , 2003 , 116, 205-228	1.6	17	
87	On the Minimum Norm Solution of Linear Programs. <i>Journal of Optimization Theory and Applications</i> , 2003 , 116, 333-345	1.6	35	
86	A Strongly Semismooth Integral Function and Its Application. <i>Computational Optimization and Applications</i> , 2003 , 25, 223-246	1.4	11	
85	Finite termination of a dual Newton method for convex best C 1 interpolation and smoothing. <i>Numerische Mathematik</i> , 2003 , 96, 317-337	2.2	1	
84	Solving KarushKuhnTucker Systems via the Trust Region and the Conjugate Gradient Methods. <i>SIAM Journal on Optimization</i> , 2003 , 14, 439-463	2	14	
83	A Feasible Sequential Linear Equation Method for Inequality Constrained Optimization. <i>SIAM Journal on Optimization</i> , 2003 , 13, 1222-1244	2	31	
82	A primaldual algorithm for minimizing a sum of Euclidean norms. <i>Journal of Computational and Applied Mathematics</i> , 2002 , 138, 127-150	2.4	11	
81	An iterative method for solving semismooth equations. <i>Journal of Computational and Applied Mathematics</i> , 2002 , 146, 1-10	2.4	1	
80	Lagrangian Globalization Methods for Nonlinear Complementarity Problems. <i>Journal of Optimization Theory and Applications</i> , 2002 , 112, 77-95	1.6	11	
79	Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems. <i>Journal of Optimization Theory and Applications</i> , 2002 , 113, 121-147	1.6	52	
78	Globally and Superlinearly Convergent QP-Free Algorithm for Nonlinear Constrained Optimization. <i>Journal of Optimization Theory and Applications</i> , 2002 , 113, 297-323	1.6	18	
77	NCP Functions Applied to Lagrangian Globalization for the Nonlinear Complementarity Problem. <i>Journal of Global Optimization</i> , 2002 , 24, 261-283	1.5	14	
76	Descent Directions of Quasi-Newton Methods for Symmetric Nonlinear Equations. <i>SIAM Journal on Numerical Analysis</i> , 2002 , 40, 1763-1774	2.4	49	
75	A Newton Method for Shape-Preserving Spline Interpolation. <i>SIAM Journal on Optimization</i> , 2002 , 13, 588-602	2	12	

74	Convergence of Newton's method for convex best interpolation. <i>Numerische Mathematik</i> , 2001 , 87, 43	5- <u>4.5</u> 6	22
73	Solving nonlinear complementarity problems with neural networks: a reformulation method approach. <i>Journal of Computational and Applied Mathematics</i> , 2001 , 131, 343-359	2.4	37
72	Solving variational inequality problems via smoothing-nonsmooth reformulations. <i>Journal of Computational and Applied Mathematics</i> , 2001 , 129, 37-62	2.4	28
71	On an Extended Lagrange Claim. <i>Journal of Optimization Theory and Applications</i> , 2001 , 108, 685-688	1.6	3
70	Stability Analysis of Gradient-Based Neural Networks for Optimization Problems. <i>Journal of Global Optimization</i> , 2001 , 19, 363-381	1.5	33
69	A Globally and Superlinearly Convergent SQP Algorithm for Nonlinear Constrained Optimization. <i>Journal of Global Optimization</i> , 2001 , 21, 157-184	1.5	8
68	Second-Order Algorithms for Generalized Finite and Semi-Infinite Min-Max Problems. <i>SIAM Journal on Optimization</i> , 2001 , 11, 937-961	2	2
67	A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. <i>Mathematical Programming</i> , 2000 , 87, 1-35	2.1	282
66	A New QP-Free, Globally Convergent, Locally Superlinearly Convergent Algorithm For Inequality Constrained Optimization. <i>SIAM Journal on Optimization</i> , 2000 , 11, 113-132	2	49
65	On the Constant Positive Linear Dependence Condition and Its Application to SQP Methods. <i>SIAM Journal on Optimization</i> , 2000 , 10, 963-981	2	121
64	A Smoothing Newton Method for Minimizing a Sum of Euclidean Norms. <i>SIAM Journal on Optimization</i> , 2000 , 11, 389-410	2	22
63	Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations. <i>SIAM Journal on Numerical Analysis</i> , 2000 , 38, 1200-1216	2.4	172
62	Polyhedral Methods for Solving Three Index Assignment Problems. <i>Combinatorial Optimization</i> , 2000 , 91-107		4
61	A Quadratic Recourse Function for the Two-Stage Stochastic Program. <i>Applied Optimization</i> , 2000 , 109-	-121	1
60	Semiderivative Functions and Reformulation Methods for Solving Complementarity and Variational Inequality Problems. <i>Applied Optimization</i> , 2000 , 317-350		3
59	Improving the convergence of non-interior point algorithms for nonlinear complementarity problems. <i>Mathematics of Computation</i> , 1999 , 69, 283-305	1.6	50
58	Regular Pseudo-Smooth NCP and BVIP Functions and Globally and Quadratically Convergent Generalized Newton Methods for Complementarity and Variational Inequality Problems. Mathematics of Operations Research, 1999, 24, 440-471	1.5	32
57	First-Order Algorithms for Generalized Semi-Infinite Min-Max Problems. <i>Computational Optimization and Applications</i> , 1999 , 13, 137-161	1.4	5

56	On NCP-Functions. Computational Optimization and Applications, 1999, 13, 201-220	1.4	110
55	Properties of the Moreau-Yosida regularization of a piecewise C2 convex function. <i>Mathematical Programming</i> , 1999 , 84, 269-281	2.1	17
54	A smoothing method for mathematical programs with equilibrium constraints. <i>Mathematical Programming</i> , 1999 , 85, 107-134	2.1	146
53	A smoothing method for mathematical programs with equilibrium constraints 1999 , 85, 107		134
52	Secant methods for semismooth equations. <i>Numerische Mathematik</i> , 1998 , 80, 305-324	2.2	40
51	A Trust Region Method for Solving Generalized Complementarity Problems. <i>SIAM Journal on Optimization</i> , 1998 , 8, 140-157	2	55
50	Quasi-Newton Bundle-Type Methods for Nondifferentiable Convex Optimization. <i>SIAM Journal on Optimization</i> , 1998 , 8, 583-603	2	43
49	Globally and Superlinearly Convergent Algorithm for Minimizing a Normal Merit Function. <i>SIAM Journal on Control and Optimization</i> , 1998 , 36, 1005-1019	1.9	5
48	Numerical Experiments for a Class of Squared Smoothing Newton Methods for Box Constrained Variational Inequality Problems. <i>Applied Optimization</i> , 1998 , 421-441		5
47	Convergence of Newton's Method for Singular Smooth and Nonsmooth Equations Using Adaptive Outer Inverses. <i>SIAM Journal on Optimization</i> , 1997 , 7, 445-462	2	49
46	Semismooth Karush-Kuhn-Tucker Equations and Convergence Analysis of Newton and Quasi-Newton Methods for Solving these Equations. <i>Mathematics of Operations Research</i> , 1997 , 22, 307	1-325	81
45	A New Nonsmooth Equations Approach to Nonlinear Complementarity Problems. <i>SIAM Journal on Control and Optimization</i> , 1997 , 35, 178-193	1.9	106
44	On superlinear convergence of quasi-Newton methods for nonsmooth equations. <i>Operations Research Letters</i> , 1997 , 20, 223-228	1	12
43	A preconditioning proximal newton method for nondifferentiable convex optimization. <i>Mathematical Programming</i> , 1997 , 76, 411-429	2.1	10
42	A Globally and Superlinearly Convergent Algorithm for Nonsmooth Convex Minimization. <i>SIAM Journal on Optimization</i> , 1996 , 6, 1106-1120	2	63
41	Globalization of Newton's Method for Solving Non-linear Equations. <i>Numerical Linear Algebra With Applications</i> , 1996 , 3, 239-249	1.6	12
40	Globalization of Newton's Method for Solving Non-linear Equations 1996 , 3, 239		1
39	Inexact Newton methods for solving nonsmooth equations. <i>Journal of Computational and Applied Mathematics</i> , 1995 , 60, 127-145	2.4	85

38	Continuous approximation schemes for stochastic programs. <i>Annals of Operations Research</i> , 1995 , 56, 15-38	3.2	5
37	An SQP algorithm for extended linear-quadratic problems in stochastic programming. <i>Annals of Operations Research</i> , 1995 , 56, 251-285	3.2	26
36	Subdifferential Convergence in Stochastic Programs. SIAM Journal on Optimization, 1995, 5, 436-453	2	16
35	Trust Region Algorithms for Solving Nonsmooth Equations. SIAM Journal on Optimization, 1995, 5, 219	-2 <u>3</u> 0	19
34	A Globally Convergent Successive Approximation Method for Severely Nonsmooth Equations. <i>SIAM Journal on Control and Optimization</i> , 1995 , 33, 402-418	1.9	49
33	Iteration Functions in Some Nonsmooth Optimization Algorithms. <i>Mathematics of Operations Research</i> , 1995 , 20, 479-496	1.5	6
32	Local Uniqueness and Convergence of Iterative Methods for Nonsmooth Variational Inequalities. Journal of Mathematical Analysis and Applications, 1995 , 196, 314-331	1.1	30
31	Newton's method for quadratic stochastic programs with recourse. <i>Journal of Computational and Applied Mathematics</i> , 1995 , 60, 29-46	2.4	30
30	A globally convergent Newton method for convex SC1 minimization problems. <i>Journal of Optimization Theory and Applications</i> , 1995 , 85, 633-648	1.6	57
29	An Iterative Method for the Minimax Problem. <i>Nonconvex Optimization and Its Applications</i> , 1995 , 55-6	7	7
29	An Iterative Method for the Minimax Problem. <i>Nonconvex Optimization and Its Applications</i> , 1995 , 55-6. A parameterized Newton method and a quasi-Newton method for nonsmooth equations. <i>Computational Optimization and Applications</i> , 1994 , 3, 157-179	7	7 54
	A parameterized Newton method and a quasi-Newton method for nonsmooth equations.		
28	A parameterized Newton method and a quasi-Newton method for nonsmooth equations. Computational Optimization and Applications, 1994, 3, 157-179 A trust region algorithm for minimization of locally Lipschitzian functions. Mathematical	1.4	54
28	A parameterized Newton method and a quasi-Newton method for nonsmooth equations. Computational Optimization and Applications, 1994, 3, 157-179 A trust region algorithm for minimization of locally Lipschitzian functions. Mathematical Programming, 1994, 66, 25-43 Superlinearly convergent approximate Newton methods for LC1 optimization problems.	2.1	54 34
28 27 26	A parameterized Newton method and a quasi-Newton method for nonsmooth equations. Computational Optimization and Applications, 1994, 3, 157-179 A trust region algorithm for minimization of locally Lipschitzian functions. Mathematical Programming, 1994, 66, 25-43 Superlinearly convergent approximate Newton methods for LC1 optimization problems. Mathematical Programming, 1994, 64, 277-294 On the range sets of variational inequalities. Journal of Optimization Theory and Applications, 1994,	2.1	543476
28 27 26 25	A parameterized Newton method and a quasi-Newton method for nonsmooth equations. Computational Optimization and Applications, 1994, 3, 157-179 A trust region algorithm for minimization of locally Lipschitzian functions. Mathematical Programming, 1994, 66, 25-43 Superlinearly convergent approximate Newton methods for LC1 optimization problems. Mathematical Programming, 1994, 64, 277-294 On the range sets of variational inequalities. Journal of Optimization Theory and Applications, 1994, 83, 565-586 A New Facet Class and a Polyhedral Method for the Three-Index Assignment Problem. Nonconvex	2.1	5434761
28 27 26 25 24	A parameterized Newton method and a quasi-Newton method for nonsmooth equations. Computational Optimization and Applications, 1994, 3, 157-179 A trust region algorithm for minimization of locally Lipschitzian functions. Mathematical Programming, 1994, 66, 25-43 Superlinearly convergent approximate Newton methods for LC1 optimization problems. Mathematical Programming, 1994, 64, 277-294 On the range sets of variational inequalities. Journal of Optimization Theory and Applications, 1994, 83, 565-586 A New Facet Class and a Polyhedral Method for the Three-Index Assignment Problem. Nonconvex Optimization and Its Applications, 1994, 256-274	1.4 2.1 2.1	54347611

20	Linear-time separation algorithms for the three-index assignment polytope. <i>Discrete Applied Mathematics</i> , 1993 , 43, 1-12	1	19
19	A nonsmooth version of Newton's method. <i>Mathematical Programming</i> , 1993 , 58, 353-367	2.1	989
18	An interior point algorithm of(O(sqrt m left {ln varepsilon } right)) iterations forC 1-convex programming. <i>Mathematical Programming</i> , 1992 , 57, 239-257	2.1	14
17	Weak directional closedness and generalized subdifferentials. <i>Journal of Mathematical Analysis and Applications</i> , 1991 , 159, 485-499	1.1	13
16	Quasidifferentials and maximal normal operators. <i>Mathematical Programming</i> , 1990 , 49, 263-271	2.1	9
15	Semismoothness and decomposition of maximal normal operators. <i>Journal of Mathematical Analysis and Applications</i> , 1990 , 146, 271-279	1.1	10
14	The maximal normal operator space and integration of subdifferentials of nonconvex functions. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 1989 , 13, 1003-1011	1.3	13
13	Directed submodularity, ditroids and directed submodular flows. <i>Mathematical Programming</i> , 1988 , 42, 579-599	2.1	37
12	Odd Submodular Functions, Dilworth Functions and Discrete Convex Functions. <i>Mathematics of Operations Research</i> , 1988 , 13, 435-446	1.5	3
11	Computing Block-Angular Karmarkar Projections with Applications to Stochastic Programming. <i>Management Science</i> , 1988 , 34, 1472-1479	3.9	68
10	TheA-Forest Iteration Method for the Stochastic Generalized Transportation Problem. <i>Mathematics of Operations Research</i> , 1987 , 12, 1-21	1.5	3
9	Discussion: A New Numerical Technique for Computing Surface Elastic Deformation Caused by a Given Normal Pressure Distribution [Hou, Keping, Zhu, Dong, and Wen, Shizhu, 1985, ASME J. Tribol., 107, pp. 128 [131]. <i>Journal of Tribology</i> , 1985 , 107, 435-435	1.8	
8	Some simple estimates for singular values of a matrix. Linear Algebra and Its Applications, 1984, 56, 105	-11.9	36
7	Complete Closedness of Maximal Monotone Operators. <i>Mathematics of Operations Research</i> , 1983 , 8, 315-317	1.5	4
6	Uniqueness of the maximal extension of a monotone operator. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 1983 , 7, 325-332	1.3	4
5	Further results on sum-of-squares tensors. Optimization Methods and Software,1-17	1.3	3
4	A tensor train approach for internet traffic data completion. Annals of Operations Research,1	3.2	3
3	Tensor Manifold with Tucker Rank Constraints. Asia-Pacific Journal of Operational Research,2150022	0.8	

2	Quaternion Matrix Optimization: Motivation and Analysis. <i>Journal of Optimization Theory and Applications</i> ,1	1.6	5	
1	T-product factorization method for internet traffic data completion with spatio-temporal regularization. <i>Computational Optimization and Applications</i> ,1	1.4	1	

Liqun Qi