List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2927746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantification of Compound Flooding over Roadway Network during Extreme Events for Planning Emergency Operations. Natural Hazards Review, 2022, 23, .	0.8	6
2	Reinforcement learning-based real-time control of coastal urban stormwater systems to mitigate flooding and improve water quality. Environmental Science: Water Research and Technology, 2022, 8, 2065-2086.	1.2	8
3	Flood resilience through crowdsourced rainfall data collection: Growing engagement faces non-uniform spatial adoption. Journal of Hydrology, 2022, 609, 127724.	2.3	4
4	Predicting combined tidal and pluvial flood inundation using a machine learning surrogate model. Journal of Hydrology: Regional Studies, 2022, 41, 101087.	1.0	7
5	Dynamic Modeling of Inland Flooding and Storm Surge on Coastal Cities under Climate Change Scenarios: Transportation Infrastructure Impacts in Norfolk, Virginia USA as a Case Study. Geosciences (Switzerland), 2022, 12, 224.	1.0	4
6	Flood mitigation in coastal urban catchments using real-time stormwater infrastructure control and reinforcement learning. Journal of Hydroinformatics, 2021, 23, 529-547.	1.1	26
7	Toward open and reproducible environmental modeling by integrating online data repositories, computational environments, and model Application Programming Interfaces. Environmental Modelling and Software, 2021, 135, 104888.	1.9	24
8	Estimating impacts of recurring flooding on roadway networks: a Norfolk, Virginia case study. Natural Hazards, 2021, 107, 2363-2387.	1.6	17
9	Enhancing Efficacy of Water Quality Trading with Automation: A Case Study in Virginia's Nutrient Trading Program. Journal of the American Water Resources Association, 2021, 57, 374-390.	1.0	7
10	Impact of Geospatial Data Enhancements for Regional-Scale 2D Hydrodynamic Flood Modeling: Case Study for the Coastal Plain of Virginia. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	0.8	6
11	A Graduate Curriculum in Cyber-Physical Systems. IEEE Design and Test, 2021, 38, 112-120.	1.1	Ο
12	Exploring the complementary relationship between solar and hydro energy harvesting for self-powered water monitoring in low-light conditions. Environmental Modelling and Software, 2021, 140, 105032.	1.9	4
13	Reinforcement Learning for Flooding Mitigation in Complex Stormwater Systems during Large Storms. , 2021, , .		1
14	Assessing Trustworthiness of Crowdsourced Flood Incident Reports Using Waze Data: A Norfolk, Virginia Case Study. Transportation Research Record, 2021, 2675, 650-662.	1.0	7
15	Nonpoint Source Water Quality Trading outcomes: Landscape-scale patterns and integration with watershed management priorities. Journal of Environmental Management, 2021, 294, 112914.	3.8	12
16	Opportunities for crowdsourcing in urban flood monitoring. Environmental Modelling and Software, 2021, 143, 105124.	1.9	21
17	Anticipating and Adapting to the Future Impacts of Climate Change on the Health, Security and Welfare of Low Elevation Coastal Zone (LECZ) Communities in Southeastern USA. Journal of Marine Science and Engineering, 2021, 9, 1196.	1.2	6
18	Assessing the Trustworthiness of Crowdsourced Rainfall Networks: A Reputation System Approach. Water Resources Research, 2021, 57, e2021WR029721.	1.7	8

#	Article	IF	CITATIONS
19	Estimating Potential Climate Change Effects on the Upper Neuse Watershed Water Balance Using the SWAT Model. Journal of the American Water Resources Association, 2020, 56, 53-67.	1.0	17
20	Training Machine Learning Surrogate Models From a Highâ€Fidelity Physicsâ€Based Model: Application for Realâ€Time Streetâ€Scale Flood Prediction in an Urban Coastal Community. Water Resources Research, 2020, 56, e2019WR027038.	1.7	58
21	Deep Reinforcement Learning with Uncertain Data for Real-Time Stormwater System Control and Flood Mitigation. Water (Switzerland), 2020, 12, 3222.	1.2	22
22	Flood Monitoring and Mitigation Strategies for Flood-Prone Urban Areas. , 2020, , .		2
23	A taxonomy for reproducible and replicable research in environmental modelling. Environmental Modelling and Software, 2020, 134, 104753.	1.9	19
24	Position paper: Open web-distributed integrated geographic modelling and simulation to enable broader participation and applications. Earth-Science Reviews, 2020, 207, 103223.	4.0	87
25	Exploring real-time control of stormwater systems for mitigating flood risk due to sea level rise. Journal of Hydrology, 2020, 583, 124571.	2.3	30
26	Deep learning Using Physically-Informed Input Data for Wetland Identification. Environmental Modelling and Software, 2020, 126, 104665.	1.9	24
27	Quantifying background nitrate removal mechanisms in an agricultural watershed with contrasting subcatchment baseflow concentrations. Journal of Environmental Quality, 2020, 49, 392-403.	1.0	1
28	Documenting Computing Environments for Reproducible Experiments. Advances in Parallel Computing, 2020, , .	0.3	4
29	Reproducible Hydrological Modeling with CyberGIS-Jupyter. , 2019, , .		5
30	Using Random Forest Classification and Nationally Available Geospatial Data to Screen for Wetlands over Large Geographic Regions. Water (Switzerland), 2019, 11, 1158.	1.2	12
31	Smart Cities Solutions for More Flood Resilient Communities. , 2019, , .		8
32	Leveraging open source software and parallel computing for model predictive control of urban drainage systems using EPA-SWMM5. Environmental Modelling and Software, 2019, 120, 104484.	1.9	42
33	Flood risk assessment and increased resilience for coastal urban watersheds under the combined impact of storm tide and heavy rainfall. Journal of Hydrology, 2019, 579, 124159.	2.3	90
34	Precipitation Extremes and Flood Frequency in a Changing Climate in Southeastern Virginia. Journal of the American Water Resources Association, 2019, 55, 780-799.	1.0	18
35	Forecasting Groundwater Table in a Flood Prone Coastal City with Long Short-term Memory and Recurrent Neural Networks. Water (Switzerland), 2019, 11, 1098.	1.2	87
36	Effects of LiDAR DEM Smoothing and Conditioning Techniques on a Topographyâ€Based Wetland Identification Model. Water Resources Research, 2019, 55, 4343-4363.	1.7	20

#	Article	IF	CITATIONS
37	MobiAmbulance: Optimal Scheduling of Emergency Vehicles in Catastrophic Situations. , 2019, , .		3
38	Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and Random Forest. Journal of Hydrology, 2018, 559, 43-55.	2.3	105
39	Evaluating the potential for site-specific modification of LiDAR DEM derivatives to improve environmental planning-scale wetland identification using Random Forest classification. Journal of Hydrology, 2018, 559, 192-208.	2.3	29
40	Trust me, my neighbors say it's raining outside. , 2018, , .		9
41	Using Geospatial Analysis and Hydrologic Modeling to Estimate Climate Change Impacts on Nitrogen Export: Case Study for a Forest and Pasture Dominated Watershed in North Carolina. ISPRS International Journal of Geo-Information, 2018, 7, 280.	1.4	3
42	A cloud-based flood warning system for forecasting impacts to transportation infrastructure systems. Environmental Modelling and Software, 2018, 107, 231-244.	1.9	37
43	Feasibility of using existing web services for on-demand data access within distributed environmental decision support systems. Journal of Hydroinformatics, 2018, 20, 263-280.	1.1	0
44	Integrating scientific cyberinfrastructures to improve reproducibility in computational hydrology: Example for HydroShare and GeoTrust. Environmental Modelling and Software, 2018, 105, 217-229.	1.9	27
45	Comparing Costs of Onsite Best Management Practices to Nutrient Credits for Stormwater Management: A Case Study in Virginia. Journal of the American Water Resources Association, 2017, 53, 131-143.	1.0	13
46	Design of a metadata framework for environmental models with an example hydrologic application in HydroShare. Environmental Modelling and Software, 2017, 93, 13-28.	1.9	40
47	Evaluation of the OntoSoft Ontology for describing metadata for legacy hydrologic modeling software. Environmental Modelling and Software, 2017, 92, 317-329.	1.9	7
48	Effect of Rain Gauge Proximity on Rainfall Estimation for Problematic Urban Coastal Watersheds in Virginia Beach, Virginia. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	5
49	Impact of Sea-Level Rise on Roadway Flooding in the Hampton Roads Region, Virginia. Journal of Infrastructure Systems, 2017, 23, .	1.0	28
50	The Impact of Projected Climate Change Scenarios on Nitrogen Yield at a Regional Scale for the Contiguous United States. Journal of the American Water Resources Association, 2017, 53, 854-870.	1.0	11
51	Method for Rapidly Assessing the Overtopping Risk of Bridges Due to Flooding over a Large Geographic Region. Journal of the American Water Resources Association, 2017, 53, 1437-1452.	1.0	4
52	Design and implementation of a general software library for using NSGA-II with SWAT for multi-objective model calibration. Environmental Modelling and Software, 2016, 84, 112-120.	1.9	44
53	Toward the Geoscience Paper of the Future: Best practices for documenting and sharing research from data to software to provenance. Earth and Space Science, 2016, 3, 388-415.	1.1	127
54	Distributed Stormwater Controls for Flood Mitigation within Urbanized Watersheds: Case Study of Rocky Branch Watershed in Columbia, South Carolina. Journal of Hydrologic Engineering - ASCE, 2016, 21	0.8	28

#	Article	IF	CITATIONS
55	Serverâ€side workflow execution using data grid technology for reproducible analyses of dataâ€intensive hydrologic systems. Earth and Space Science, 2016, 3, 163-175.	1.1	10
56	HydroShare: Sharing Diverse Environmental Data Types and Models as Social Objects with Application to the Hydrology Domain. Journal of the American Water Resources Association, 2016, 52, 873-889.	1.0	73
57	Using a data grid to automate data preparation pipelines required for regional-scale hydrologic modeling. Environmental Modelling and Software, 2016, 78, 31-39.	1.9	20
58	WDCloud: An end to end system for large-scale watershed delineation on cloud. , 2015, , .		1
59	A methodology for evaluating evapotranspiration estimates at the watershed-scale using GRACE. Journal of Hydrology, 2015, 523, 574-586.	2.3	56
60	Using a Service-Oriented Approach to Simulate Integrated Urban Infrastructure Systems. Journal of Computing in Civil Engineering, 2015, 29, .	2.5	6
61	A hierarchical network-based algorithm for multi-scale watershed delineation. Computers and Geosciences, 2014, 72, 156-166.	2.0	9
62	Calibration of SWAT models using the cloud. Environmental Modelling and Software, 2014, 62, 188-196.	1.9	29
63	Coupling climate and hydrological models: Interoperability through Web Services. Environmental Modelling and Software, 2013, 46, 250-259.	1.9	38
64	Driving plug-and-play models with data from web services: A demonstration of interoperability between CSDMS and CUAHSI-HIS. Computers and Geosciences, 2013, 53, 154-161.	2.0	38
65	Models as web services using the Open Geospatial Consortium (OGC) Web Processing Service (WPS) standard. Environmental Modelling and Software, 2013, 41, 72-83.	1.9	113
66	Simulating watersheds using loosely integrated model components: Evaluation of computational scaling using OpenMI. Environmental Modelling and Software, 2013, 39, 304-313.	1.9	18
67	Integrated modeling within a Hydrologic Information System: An OpenMI based approach. Environmental Modelling and Software, 2013, 39, 263-273.	1.9	58
68	Integrated environmental modeling: A vision and roadmap for the future. Environmental Modelling and Software, 2013, 39, 3-23.	1.9	366
69	Estimating Watershed-Scale Precipitation by Combining Gauge- and Radar-Derived Observations. Journal of Hydrologic Engineering - ASCE, 2013, 18, 983-994.	0.8	11
70	An ontology for componentâ€based models of water resource systems. Water Resources Research, 2013, 49, 5077-5091.	1.7	16
71	Calibration of watershed models using cloud computing. , 2012, , .		14
72	Toward disentangling the effect of hydrologic and nitrogen source changes from 1992 to 2001 on incremental nitrogen yield in the contiguous United States. Water Resources Research, 2012, 48, .	1.7	9

JONATHAN L GOODALL

#	Article	IF	CITATIONS
73	Feedback loops and temporal misalignment in componentâ€based hydrologic modeling. Water Resources Research, 2011, 47, .	1.7	13
74	Annual and interannual variations in terrestrial water storage during and following a period of drought in South Carolina, USA. Journal of Hydrology, 2011, 409, 472-482.	2.3	8
75	Modeling water resource systems using a service-oriented computing paradigm. Environmental Modelling and Software, 2011, 26, 573-582.	1.9	105
76	A generic approach for developing process-level hydrologic modeling components. Environmental Modelling and Software, 2010, 25, 819-825.	1.9	38
77	A software library for quantifying regional-scale nitrogen transport within river basin systems. Environmental Modelling and Software, 2010, 25, 1713-1721.	1.9	3
78	Comparison of Flood Top Width Predictions Using Surveyed and LiDAR-Derived Channel Geometries. Journal of Hydrologic Engineering - ASCE, 2010, 15, 97-106.	0.8	9
79	A spatiotemporal data model for river basinâ€scale hydrologic systems. International Journal of Geographical Information Science, 2009, 23, 233-247.	2.2	10
80	Standardizing Access to Hydrologic Data Repositories through Web Services. , 2009, , .		4
81	A first approach to web services for the National Water Information System. Environmental Modelling and Software, 2008, 23, 404-411.	1.9	109
82	Applications of network analysis for adaptive management of artificial drainage systems in landscapes vulnerable to sea level rise. Journal of Hydrology, 2008, 357, 207-217.	2.3	62
83	New Software Architecture for Integrated Water Modeling: CUAHSI/OpenMI Workshop for Integrating Water Models; Wallingford, United Kingdom, 7-10 April 2008. Eos, 2008, 89, 420-420.	0.1	0
84	Integrating Arc Hydro Features with a Schematic Network. Transactions in GIS, 2006, 10, 219-237.	1.0	20
85	Multi-decadal synthesis of benthic–pelagic coupling in the western arctic: Role of cross-shelf advective processes. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52, 3462-3477.	0.6	132
86	Sensitivity of Remotely Sensed Vegetation to Hydrologic Predictors across the Colorado River Basin, 2001–2019. Journal of the American Water Resources Association, 0, , .	1.0	1
87	An Openâ€Source Python Library for Varying Model Parameters and Automating Concurrent Simulations of the National Water Model. Journal of the American Water Resources Association, 0, , .	1.0	1