Ahmet Cingoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2927414/publications.pdf

Version: 2024-02-01

933447 1125743 22 254 10 13 citations h-index g-index papers 23 23 23 442 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Parameters Influencing Gene Delivery Efficiency of PEGylated Chitosan Nanoparticles: Experimental and Modeling Approach. Advanced NanoBiomed Research, 2022, 2, 2100033.	3.6	12
2	Generation of TRAIL-resistant cell line models reveals distinct adaptive mechanisms for acquired resistance and re-sensitization. Oncogene, 2021, 40, 3201-3216.	5.9	5
3	Systematic characterization of chromatin modifying enzymes identifies KDM3B as a critical regulator in castration resistant prostate cancer. Oncogene, 2020, 39, 2187-2201.	5.9	28
4	TRAIL-conjugated silver nanoparticles sensitize glioblastoma cells to TRAIL by regulating CHK1 in the DNA repair pathway. Neurological Research, 2020, 42, 1061-1069.	1.3	10
5	Drug Repositioning Screen on a New Primary Cell Line Identifies Potent Therapeutics for Glioblastoma. Frontiers in Neuroscience, 2020, 14, 578316.	2.8	1
6	EXTH-10. COMBINATION OF EPIGENETIC ENZYME INHIBITORS, GSK-J4 AND BELINOSTAT, REVEALS HIGH EFFICACY IN IDH1 MUTANT GLIOMAS. Neuro-Oncology, 2020, 22, ii88-ii89.	1,2	0
7	The pro-apoptotic Bcl-2 family member Harakiri (HRK) induces cell death in glioblastoma multiforme. Cell Death Discovery, 2019, 5, 64.	4.7	26
8	Identification of SERPINE1 as a Regulator of Glioblastoma Cell Dispersal with Transcriptome Profiling. Cancers, 2019, 11, 1651.	3.7	43
9	The fungal metabolite chaetocin is a sensitizer for pro-apoptotic therapies in glioblastoma. Cell Death and Disease, 2019, 10, 894.	6.3	21
10	PO-306 Identification of chromatin modifiers regulating temozolomide resistance in glioblastoma multiforme. ESMO Open, 2018, 3, A140.	4.5	0
11	Macromol. Biosci. 2/2017. Macromolecular Bioscience, 2017, 17, .	4.1	1
12	KDM2B, an H3K36-specific demethylase, regulates apoptotic response of GBM cells to TRAIL. Cell Death and Disease, 2017, 8, e2897-e2897.	6.3	26
13	Quinacrine Mediated Sensitization of Glioblastoma (GBM) Cells to TRAIL through MMP-Sensitive PEG Hydrogel Carriers. Macromolecular Bioscience, 2017, 17, 1600267.	4.1	28
14	Abstract 4164: TRAIL resistance of glioblastoma cells is associated with DNA damage signalling network. , 2017, , .		1
15	DRES-12. PROFILING OF DIFFERENT GBM CELL POPULATIONS WITH VARYING APOPTOTIC THRESHOLDS IDENTIFIES IGFBP-2 AS AÂNOVEL MEDIATOR OF TRAIL RESISTANCE. Neuro-Oncology, 2016, 18, vi54-vi54.	1.2	0
16	DDIS-04. MITOXANTRONE POTENTIATES TRAIL-INDUCED APOPTOSIS IN GLIOBLASTOMA MULTIFORME. Neuro-Oncology, 2016, 18, vi48-vi48.	1.2	0
17	Mitoxantrone as a TRAIL-sensitizing agent for glioblastoma multiforme. European Journal of Cancer, 2016, 69, S81.	2.8	0
18	Identification of Mitoxantrone as a TRAIL-sensitizing agent for Glioblastoma Multiforme. Cancer Biology and Therapy, 2016, 17, 546-557.	3.4	27

AHMET CINGOZ

#	Article	IF	CITATION
19	An exploration of plastic deformation dependence of cell viability and adhesion in metallic implant materials. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 177-186.	3.1	23
20	EPIG-01THE FUNCTION OF CHROMATIN-MODIFYING ENZYMES IN GBM CELL APOPTOSIS. Neuro-Oncology, 2015, 17, v86.1-v86.	1.2	0
21	CBIO-08IGFBP2 IS A NOVEL MOLECULAR DETERMINANT IN TRAIL-RESISTANT SUBPOPULATIONS OF GBM CELL LINES. Neuro-Oncology, 2015, 17, v56.3-v56.	1.2	O
22	Abstract B73: Screen among 1200 FDA-approved drug library reveals mitoxantrone as a TRAIL-sensitizing agent for glioblastoma multiforme., 2015,,.		0