Kenta Iyoki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2927380/publications.pdf Version: 2024-02-01

KENTA IVORI

#	Article	IF	CITATIONS
1	Broadening synthetic scope of SSZ-39 zeolite for NH3-SCR: A fast and direct route from amorphous starting materials. Microporous and Mesoporous Materials, 2022, 330, 111583.	2.2	9
2	Reduction of crystal size of silicalite-1 synthesized in fluoride-containing media via multi-stage heating with intermediate stirring. Journal of the Ceramic Society of Japan, 2022, 130, 187-194.	0.5	1
3	Exploring Hydrothermal Synthesis of SAPO-18 under High Hydrostatic Pressure. Nanomaterials, 2022, 12, 396.	1.9	4
4	Robust CON-type zeolite nanocatalyst in methanol-to-olefins reaction: downsizing, recrystallisation and defect-healing treatments toward prolonged lifetime. Materials Advances, 2022, 3, 5442-5450.	2.6	4
5	Active Sites on Zn _{<i>x</i>} Zr _{1–<i>x</i>} O _{2–<i>x</i>} Solid Solution Catalysts for CO ₂ -to-Methanol Hydrogenation. ACS Catalysis, 2022, 12, 7748-7759.	5.5	37
6	Dealumination of small-pore zeolites through pore-opening migration process with the aid of pore-filler stabilization. Science Advances, 2022, 8, .	4.7	9
7	Influence of Si/Al ratio of MOR type zeolites for bifunctional catalysts specific to the one-pass synthesis of lower olefins via CO2 hydrogenation. Catalysis Today, 2022, , .	2.2	2
8	Ultrafast and continuous-flow synthesis of AFX zeolite <i>via</i> interzeolite conversion of FAU zeolite. Reaction Chemistry and Engineering, 2021, 6, 74-81.	1.9	7
9	Synthetic and natural MOR zeolites as high-capacity adsorbents for the removal of nitrous oxide. Chemical Communications, 2021, 57, 1312-1315.	2.2	14
10	Tracking the crystallization behavior of high-silica FAU during AEI-type zeolite synthesis using acid treated FAU-type zeolite. RSC Advances, 2021, 11, 23082-23089.	1.7	10
11	Influence of Reaction Temperature on CO2-to-methanol Hydrogenation over <i>M</i> ZrOx (<i>M</i> =) Tj ETQq1	10.78431 0.7	14 ₁₀ gBT /Ov
12	Reaction Kinetics Regulated Formation of Short-Range Order in an Amorphous Matrix during Zeolite Crystallization. Journal of the American Chemical Society, 2021, 143, 10986-10997.	6.6	32
13	Search for solid acid catalysts aiming at the development of bifunctional tandem catalysts for the one-pass synthesis of lower olefins via CO2 hydrogenation. International Journal of Hydrogen Energy, 2021, 46, 36721-36730.	3.8	18
14	Recent progress in the improvement of hydrothermal stability of zeolites. Chemical Science, 2021, 12, 7677-7695.	3.7	49
15	Optimized ultrafast flow synthesis of CON-type zeolite and improvement of its catalytic properties. Reaction Chemistry and Engineering, 2020, 5, 2260-2266.	1.9	5
16	Toward Efficient Synthesis of Chiral Zeolites: A Rational Strategy for Fluorideâ€Free Synthesis of STWâ€Type Zeolite. Angewandte Chemie - International Edition, 2020, 59, 20099-20103.	7.2	9
17	Toward Efficient Synthesis of Chiral Zeolites: A Rational Strategy for Fluorideâ€Free Synthesis of STWâ€Type Zeolite. Angewandte Chemie, 2020, 132, 20274-20278.	1.6	1
18	Understanding the Nucleation and Crystal Growth of Zeolites: A Case Study on the Crystallization of ZSM-5 from a Hydrogel System Under Ultrasonication. Journal of Physical Chemistry C, 2020, 124, 11516-11524.	1.5	15

Κεντα Ιγοκι

#	Article	IF	CITATIONS
19	Superior Ionâ€exchange Property of Amorphous Aluminosilicates Prepared by a Coâ€precipitation Method. Chemistry - an Asian Journal, 2020, 15, 2029-2034.	1.7	4
20	Extremely Stable Zeolites Developed via Designed Liquid-Mediated Treatment. Journal of the American Chemical Society, 2020, 142, 3931-3938.	6.6	48
21	Comparative study of direct methylation of benzene with methane on cobalt-exchanged ZSM-5 and ZSM-11 zeolites. Applied Catalysis A: General, 2020, 601, 117661.	2.2	12
22	Rapid Synthesis of Hydrothermally Stable ZSM-5 in the Presence of 1-Butanol. Chemistry Letters, 2020, 49, 1006-1008.	0.7	5
23	Crucial Factors for Seed-Directed Synthesis of CON-type Aluminoborosilicate Zeolites Using Tetraethylammonium. Crystal Growth and Design, 2019, 19, 5283-5291.	1.4	6
24	Zeolite Crystallization Triggered by Intermediate Stirring. Journal of Physical Chemistry C, 2019, 123, 20304-20313.	1.5	14
25	Synthesis and characterization of MFI-type zincosilicate zeolites with high zinc content using mechanochemically treated Si–Zn oxide composite. Microporous and Mesoporous Materials, 2019, 288, 109594.	2.2	15
26	Incorporation of Si into Iron Oxide-based Microporous Zeolitic Framework for Improving Thermal Stability and Changing Guest Species. Chemistry Letters, 2019, 48, 1217-1220.	0.7	1
27	Insights into the ion-exchange properties of Zn(<scp>ii</scp>)-incorporated MOR zeolites for the capture of multivalent cations. Physical Chemistry Chemical Physics, 2019, 21, 4015-4021.	1.3	14
28	Ultrafast synthesis of AFX-Type zeolite with enhanced activity in the selective catalytic reduction of NOx and hydrothermal stability. RSC Advances, 2019, 9, 16790-16796.	1.7	19
29	Role of sodium cation during aging process in the synthesis of LEV-type zeolite. Microporous and Mesoporous Materials, 2019, 284, 82-89.	2.2	15
30	Formation of a dense non-crystalline layer on the surface of zeolite Y crystals under high-temperature steaming conditions. Microporous and Mesoporous Materials, 2018, 268, 77-83.	2.2	13
31	Seed-directed synthesis of zincoaluminosilicate MSE-type zeolites using co-precipitated gels with tetraethylammonium hydroxide as a simple organic structure directing agent. Microporous and Mesoporous Materials, 2018, 257, 272-280.	2.2	5
32	Synthesis of New Microporous Zincosilicates with CHA Zeolite Topology as Efficient Platforms for Ionâ€Exchange of Divalent Cations. Chemistry - A European Journal, 2018, 24, 808-812.	1.7	15
33	Temperature-controlled, two-stage synthesis of ZSM-5 zeolite nanoparticles with Al atoms tetrahedrally coordinated in the framework. Microporous and Mesoporous Materials, 2018, 270, 200-203.	2.2	16
34	Synthesis of Microporous Zincosilicate *BEA Molecular Sieves from Zincosilicate Gels Co-precipitated in the Presence of an Organic Structure-directing Agent. Chemistry Letters, 2018, 47, 897-900.	0.7	1
35	Increasing the ion-exchange capacity of MFI zeolites by introducing Zn to aluminosilicate frameworks. Dalton Transactions, 2018, 47, 9546-9553.	1.6	7
36	Rational seed-directed synthesis of MSE-type zeolites using a simple organic structure-directing agent by extending the composite building unit hypothesis. Microporous and Mesoporous Materials, 2017, 245, 1-7.	2.2	14

Κεντά Ιγοκι

#	Article	IF	CITATIONS
37	Ultrafast synthesis of high-silica erionite zeolites with improved hydrothermal stability. Chemical Communications, 2017, 53, 6796-6799.	2.2	24
38	Seed-directed Synthesis of CON-type Zeolite Using Tetraethylammonium Hydroxide as a Simple Organic Structure-directing Agent. Chemistry Letters, 2017, 46, 1419-1421.	0.7	7
39	Organic-free synthesis of zincoaluminosilicate zeolites from homogeneous gels prepared by a co-precipitation method. Dalton Transactions, 2017, 46, 10837-10846.	1.6	16
40	Landscape of Research Areas for Zeolites and Metal-Organic Frameworks Using Computational Classification Based on Citation Networks. Materials, 2017, 10, 1428.	1.3	19
41	Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature. ACS Central Science, 2016, 2, 424-429.	5.3	353
42	Organic structure-directing agent-free synthesis of NES-type zeolites using EU-1 seed crystals. Microporous and Mesoporous Materials, 2015, 215, 191-198.	2.2	22
43	Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents. Microporous and Mesoporous Materials, 2014, 189, 22-30.	2.2	156
44	Seed-directed, rapid synthesis of MAZ-type zeolites without using organic structure-directing agent. Microporous and Mesoporous Materials, 2014, 186, 21-28.	2.2	28
45	Broadening the Applicable Scope of Seed-Directed, Organic Structure-Directing Agent-Free Synthesis of Zeolite to Zincosilicate Components: A Case of VET-Type Zincosilicate Zeolites. Chemistry of Materials, 2014, 26, 1957-1966.	3.2	29
46	Hierarchical porous silicavia solid-phase hydrolysis/polycondensation of cubic siloxane-based molecular units. Journal of Materials Chemistry A, 2013, 1, 671-676.	5.2	8
47	Diolâ€Linked Microporous Networks of Cubic Siloxane Cages. Chemistry - A European Journal, 2013, 19, 1700-1705.	1.7	23
48	Seedâ€Assisted, Oneâ€Pot Synthesis of Hollow Zeolite Beta without Using Organic Structureâ€Directing Agents. Chemistry - an Asian Journal, 2013, 8, 1419-1427.	1.7	39
49	Facile Synthesis of Well-dispersed Hollow Mesoporous Silica Nanoparticles Using Iron Oxide Nanoparticles as Template. Chemistry Letters, 2013, 42, 316-317.	0.7	10
50	Synthesis of pure-silica ZSM-48 zeolite under mild hydrothermal condition with conventional amphiphilic cation by tuning the reactant gel composition. Journal of the Ceramic Society of Japan, 2013, 121, 575-577.	0.5	6
51	OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous and Mesoporous Materials, 2012, 163, 282-290.	2.2	71
52	A Working Hypothesis for Broadening Framework Types of Zeolites in Seed-Assisted Synthesis without Organic Structure-Directing Agent. Journal of the American Chemical Society, 2012, 134, 11542-11549.	6.6	272
53	Synthesis of MTW-type Zeolites in the Absence of Organic Structure-directing Agent. Chemistry Letters, 2010, 39, 730-731.	0.7	64