## Leon Earl Gray Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2927280/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Mixture of Five Phthalate Esters Inhibits Fetal Testicular Testosterone Production in the<br>Sprague-Dawley Rat in a Cumulative, Dose-Additive Manner. Toxicological Sciences, 2008, 105, 153-165.                                                                 | 1.4 | 370       |
| 2  | Chronic Di-n-butyl Phthalate Exposure in Rats Reduces Fertility and Alters Ovarian Function During<br>Pregnancy in Female Long Evans Hooded Rats. Toxicological Sciences, 2006, 93, 189-195.                                                                         | 1.4 | 117       |
| 3  | Xenoendocrine disrupters: laboratory studies on male reproductive effects. Toxicology Letters, 1998, 102-103, 331-335.                                                                                                                                               | 0.4 | 111       |
| 4  | Effects of Pesticides and Toxic Substances On Behavioral and Morphological Reproductive<br>Development: Endocrine Versus Nonendocrine Mechanisms. Toxicology and Industrial Health, 1998, 14,<br>159-184.                                                            | 0.6 | 95        |
| 5  | Transgenerational Effects of Di (2-Ethylhexyl) Phthalate in the Male CRL:CD(SD) Rat: Added Value of<br>Assessing Multiple Offspring per Litter. Toxicological Sciences, 2009, 110, 411-425.                                                                          | 1.4 | 83        |
| 6  | Methoxychlor induces estrogen-like alterations of behavior and the reproductive tract in the female<br>rat and hamster: Effects on sex behavior, running wheel activity, and uterine morphology. Toxicology<br>and Applied Pharmacology, 1988, 96, 525-540.          | 1.3 | 76        |
| 7  | Prochloraz Inhibits Testosterone Production at Dosages below Those that Affect<br>Androgen-Dependent Organ Weights or the Onset of Puberty in the Male Sprague Dawley Rat.<br>Toxicological Sciences, 2007, 97, 65-74.                                               | 1.4 | 62        |
| 8  | Multivariate analysis of the effects of manganese on the reproductive physiology and behavior of the<br>male house mouse. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1980, 6,<br>861-867.                                              | 1.1 | 52        |
| 9  | Tiered screening and testing strategy for xenoestrogens and antiandrogens. Toxicology Letters, 1998, 102-103, 677-680.                                                                                                                                               | 0.4 | 49        |
| 10 | Mixed "Antiandrogenic―Chemicals at Low Individual Doses Produce Reproductive Tract<br>Malformations in the Male Rat. Toxicological Sciences, 2018, 164, 166-178.                                                                                                     | 1.4 | 49        |
| 11 | Alteration of behavioral sex differentiation by exposure to estrogenic compounds during a critical neonatal period: Effects of zearalenone, methoxychlor, and estradiol in hamsters. Toxicology and Applied Pharmacology, 1985, 80, 127-136.                         | 1.3 | 37        |
| 12 | Establishing the "Biological Relevance―of Dipentyl Phthalate Reductions in Fetal Rat Testosterone<br>Production and Plasma and Testis Testosterone Levels. Toxicological Sciences, 2016, 149, 178-191.                                                               | 1.4 | 34        |
| 13 | An extended evaluation of an in vivo teratology screen utilizing postnatal growth and viability in the mouse. Teratogenesis, Carcinogenesis, and Mutagenesis, 1984, 4, 403-426.                                                                                      | 0.8 | 25        |
| 14 | Rebuttal of "Flawed Experimental Design Reveals the Need for Guidelines Requiring Appropriate<br>Positive Controls in Endocrine Disruption Research―by vom Saal. Toxicological Sciences, 2010, 115,<br>614-620.                                                      | 1.4 | 19        |
| 15 | A Conflicted Tale of Two Novel AR Antagonists In Vitro and In Vivo: Pyrifluquinazon Versus Bisphenol<br>C. Toxicological Sciences, 2019, 168, 632-643.                                                                                                               | 1.4 | 14        |
| 16 | Genomic and Hormonal Biomarkers of Phthalate-Induced Male Rat Reproductive Developmental<br>Toxicity Part II: A Targeted RT-qPCR Array Approach That Defines a Unique Adverse Outcome Pathway.<br>Toxicological Sciences, 2021, 182, 195-214.                        | 1.4 | 9         |
| 17 | Twenty-five years after "Wingspread―– Environmental endocrine disruptors (EDCs) and human health.<br>Current Opinion in Toxicology, 2017, 3, 40-47.                                                                                                                  | 2.6 | 7         |
| 18 | <i>In Utero</i> Exposure to a Mixture of the Perfluoroalkyl-Isopropyl Pesticide Pyrifluquinazon With<br>Dibutyl Phthalate Cumulatively Disrupts Male Rat Reproductive Development via Different Mechanisms<br>of Action. Toxicological Sciences, 2022, 188, 234-247. | 1.4 | 6         |

| #  | Article                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The effects of the reproductive status and prior housing conditions on the aggressiveness of female mice. Behavioral and Neural Biology, 1979, 26, 508-513. | 2.3 | 2         |