
Ying Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2927241/publications.pdf Version: 2024-02-01

YING GUAN

#	Article	IF	CITATIONS
1	Radial variation of wood anatomical and chemical properties in eight poplar clones. Canadian Journal of Forest Research, 2022, 52, 19-26.	1.7	4
2	Novel strategy for establishment of an FT-Raman spectroscopy based quantitative model for poplar holocellulose content determination. Carbohydrate Polymers, 2022, 277, 118793.	10.2	6
3	Monitoring the kappa number of bleached pulps based on FT-Raman spectroscopy. Cellulose, 2022, 29, 1069-1080.	4.9	3
4	Regulating Lignin-Based Epoxy Vitrimer Performance by Fine-Tuning the Lignin Structure. ACS Applied Polymer Materials, 2022, 4, 1117-1125.	4.4	32
5	Machine learning prediction of lignin content in poplar with Raman spectroscopy. Bioresource Technology, 2022, 348, 126812.	9.6	30
6	Magnetic Field-Assisted Fast Assembly of Microgel Colloidal Crystals. Langmuir, 2022, 38, 6057-6065.	3.5	5
7	Novel highâ€strength montmorillonite/polyvinyl alcohol composite film enhanced by chitin nanowhiskers. Journal of Applied Polymer Science, 2021, 138, app50344.	2.6	4
8	Rapid Processing of Holocellulose-Based Nanopaper toward an Electrode Material. ACS Sustainable Chemistry and Engineering, 2021, 9, 3337-3346.	6.7	9
9	Fabrication of flexible composite film based on xylan from pulping process for packaging application. International Journal of Biological Macromolecules, 2021, 173, 285-292.	7.5	16
10	Comparative studies on lignin structures in normal and tension wood of Populus × euramericana cv. "74/76― International Journal of Biological Macromolecules, 2021, 172, 178-185.	7.5	4
11	TEMPO-oxidized cellulose hydrogel for efficient adsorption of Cu2+ and Pb2+ modified by polyethyleneimine. Cellulose, 2021, 28, 7953-7968.	4.9	33
12	Diels–Alder Cross-Linked, Washing-Free Hydrogel Films with Ordered Wrinkling Patterns for Multicellular Spheroid Generation. Biomacromolecules, 2021, 22, 3474-3485.	5.4	6
13	Constructing a Novel Xylan-Based Film with Flexibility, Transparency, and High Strength. Biomacromolecules, 2021, 22, 3810-3818.	5.4	14
14	Tough, Resilient, Adhesive, and Anti-Freezing Hydrogels Cross-Linked with a Macromolecular Cross-Linker for Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 42052-42062.	8.0	43
15	Construction of shape memorable imprinted cavities for protein recognition using oligo-l-lysine-based peptide crosslinker. Journal of Colloid and Interface Science, 2021, 595, 118-128.	9.4	11
16	A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+. International Journal of Biological Macromolecules, 2021, 187, 922-930.	7.5	52
17	A highly programmable platform for sequential release of protein therapeutics. Journal of Materials Chemistry B, 2021, 9, 1616-1624.	5.8	6
18	High-Performanced Hemicellulose Based Organic-Inorganic Films with Polyethyleneimine. Polymers, 2021, 13, 3777.	4.5	3

Ying Guan

#	Article	IF	CITATIONS
19	Injectable Carrier for Zero-Order Release of Salmon Calcitonin. ACS Biomaterials Science and Engineering, 2020, 6, 485-493.	5.2	13
20	Smart microneedle patches for rapid, and painless transdermal insulin delivery. Journal of Materials Chemistry B, 2020, 8, 9335-9342.	5.8	19
21	Glucose-Triggered Micellization of Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 667 Td (glycol)- Copolymer. ACS Applied Polymer Materials, 2020, 2, 3966-3976.	:i>b-p 4.4	oly(<i>N</i> 7
22	Hydrogenâ€Bonded Films for Zeroâ€Order Release of Leuprolide. Macromolecular Bioscience, 2020, 20, 2000050.	4.1	6
23	A sustained zero-order release carrier for long-acting, peakless basal insulin therapy. Journal of Materials Chemistry B, 2020, 8, 1952-1959.	5.8	15
24	Hemicelluloses-based magnetic aerogel as an efficient adsorbent for Congo red. International Journal of Biological Macromolecules, 2020, 155, 369-375.	7.5	44
25	PHEMA hydrogel films crosslinked with dynamic disulfide bonds: synthesis, swelling-induced mechanical instability and self-healing. Polymer Chemistry, 2019, 10, 4844-4851.	3.9	25
26	Ultra-efficient sorption of Cu2+ and Pb2+ ions by light biochar derived from Medulla tetrapanacis. Bioresource Technology, 2019, 291, 121818.	9.6	42
27	Fabrication of hemicelluloses films with enhanced mechanical properties by graphene oxide for humidity sensing. Carbohydrate Polymers, 2019, 208, 513-520.	10.2	28
28	A slow pyrolysis biochar derived from Tetrapanax papyriferum petiole as an effective sorbent for removing copper ions from aqueous solution. BioResources, 2019, 14, 4430-4453.	1.0	2
29	Investigation of the Thermo-Mechanical Properties of Blend Films Based on Hemicelluloses and Cellulose. International Journal of Polymer Science, 2018, 2018, 1-10.	2.7	6
30	Preparation and Characterization of Blended Films from Quaternized Hemicelluloses and Carboxymethyl Cellulose. Materials, 2016, 9, 4.	2.9	26
31	High Strength Hemicellulose-Based Nanocomposite Film for Food Packaging Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 1985-1993.	6.7	145
32	Facile approach to prepare drug-loading film from hemicelluloses and chitosan. Carbohydrate Polymers, 2016, 153, 542-548.	10.2	42
33	Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties. Scientific Reports, 2015, 5, 16405.	3.3	29
34	Regenerated Cellulose Fibers Prepared from Wheat Straw with Different Solvents. Macromolecular Materials and Engineering, 2015, 300, 793-801.	3.6	11
35	Fractionation of bamboo hemicelluloses by graded saturated ammonium sulphate. Carbohydrate Polymers, 2015, 129, 201-207.	10.2	20
36	Fabrication of Biopolymer Hydrogel Containing Ag Nanoparticles for Antibacterial Property. Industrial & Engineering Chemistry Research, 2015, 54, 7393-7400.	3.7	42

Ying Guan

#	Article	IF	CITATIONS
37	Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers. Carbohydrate Polymers, 2015, 128, 147-153.	10.2	43
38	A non-covalent strategy for montmorillonite/xylose self-healing hydrogels. RSC Advances, 2015, 5, 41006-41012.	3.6	20
39	Regulating effect of hemicelluloses on the preparation and properties of composite Lyocell fibers. Cellulose, 2015, 22, 1505-1516.	4.9	10
40	Organic/Inorganic Superabsorbent Hydrogels Based on Xylan and Montmorillonite. Journal of Nanomaterials, 2014, 2014, 1-11.	2.7	17
41	High strength of hemicelluloses based hydrogels by freeze/thaw technique. Carbohydrate Polymers, 2014, 101, 272-280.	10.2	126
42	Nanoreinforced hemicellulose-based hydrogels prepared by freeze–thaw treatment. Cellulose, 2014, 21, 1709-1721.	4.9	39
43	Synthesis and properties of hemicelluloses-based semi-IPN hydrogels. International Journal of Biological Macromolecules, 2014, 65, 564-572.	7.5	39
44	Organic–Inorganic Composite Films Based on Modified Hemicelluloses with Clay Nanoplatelets. ACS Sustainable Chemistry and Engineering, 2014, 2, 1811-1818.	6.7	42