Wenzhang Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2927188/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A graphitized expanded graphite cathode for aluminum-ion battery with excellent rate capability. Journal of Energy Chemistry, 2022, 66, 38-44.	12.9	17
2	Macroscopic assembled graphene nanofilms based room temperature ultrafast midâ€infrared photodetectors. InformaAnA-MateriÃily, 2022, 4, .	17.3	24
3	2Dâ€Topologyâ€Seeded Graphitization for Highly Thermally Conductive Carbon Fibers. Advanced Materials, 2022, 34, e2201867.	21.0	40
4	Multifunctional Macroassembled Graphene Nanofilms with High Crystallinity. Advanced Materials, 2021, 33, e2104195.	21.0	30
5	A robust asymmetric porous SWCNT/Gelatin thin membrane with salt-resistant for efficient solar vapor generation. Applied Materials Today, 2020, 18, 100459.	4.3	24
6	Liquid crystalline 3D printing for superstrong graphene microlattices with high density. Carbon, 2020, 159, 166-174.	10.3	21
7	Heavy Water Enables High-Voltage Aqueous Electrochemistry via the Deuterium Isotope Effect. Journal of Physical Chemistry Letters, 2020, 11, 303-310.	4.6	14
8	A polyimide-pyrolyzed carbon waste approach for the scalable and controlled electrochemical preparation of size-tunable graphene. Nanoscale, 2020, 12, 11971-11978.	5.6	12
9	Ultrathick and highly thermally conductive graphene films by self-fusion. Carbon, 2020, 167, 249-255.	10.3	55
10	Rapid roll-to-roll production of graphene films using intensive Joule heating. Carbon, 2019, 155, 462-468.	10.3	73
11	Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery. Carbon, 2019, 148, 134-140.	10.3	74
12	Hierarchical Porous SWCNT Stringed Carbon Polyhedrons and PSS Threaded MOF Bilayer Membrane for Efficient Solar Vapor Generation. Small, 2019, 15, e1900354.	10.0	89
13	Advanced Bi2O2.7/Bi2Ti2O7 composite film with enhanced visible-light-driven activity for the degradation of organic dyes. Research on Chemical Intermediates, 2018, 44, 4609-4618.	2.7	14
14	Gold-loaded graphene oxide/PDPB composites for the synchronous removal of Cr(VI) and phenol. Chinese Journal of Catalysis, 2018, 39, 8-15.	14.0	28
15	SERS self-monitoring of Ag-catalyzed reaction by magnetically separable mesoporous Fe 3 O 4 @Ag@mSiO 2. Microporous and Mesoporous Materials, 2018, 263, 113-119.	4.4	11
16	Reduced {001}-TiO _{2â^'x} photocatalysts: noble-metal-free CO ₂ photoreduction for selective CH ₄ evolution. Physical Chemistry Chemical Physics, 2017, 19, 13875-13881.	2.8	50
17	Modifications on reduced titanium dioxide photocatalysts: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 32, 21-39.	11.6	221
18	Zn-Assisted TiO _{2–<i>x</i>} Photocatalyst with Efficient Charge Separation for Enhanced Photocatalytic Activities. Journal of Physical Chemistry C, 2017, 121, 17068-17076.	3.1	24

Wenzhang Fang

#	Article	IF	CITATIONS
19	Enhanced photoreduction of Cr(<scp>vi</scp>) and photooxidation of NO over TiO _{2â^'x} mesoporous single crystals. RSC Advances, 2017, 7, 55927-55934.	3.6	9
20	Enhanced photocatalytic activities of vacuum activated TiO2 catalysts with Ti3+ and N co-doped. Catalysis Today, 2016, 266, 188-196.	4.4	61
21	Enhanced photocatalytic hydrogen evolution activity of CuInS2 loaded TiO2 under solar light irradiation. Journal of Solid State Chemistry, 2015, 226, 94-100.	2.9	41
22	Influence of Na ⁺ ion doping on the phase change and upconversion emissions of the GdF ₃ : Yb ³⁺ , Tm ³⁺ nanocrystals obtained from the designed molecular precursors. RSC Advances, 2015, 5, 100535-100545.	3.6	21
23	Highly-dispersed boron-doped graphene nanoribbons with enhanced conductibility and photocatalysis. Chemical Communications, 2014, 50, 6637-6640.	4.1	91
24	A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Applied Catalysis B: Environmental, 2014, 160-161, 240-246.	20.2	254
25	Self-doped Ti 3+ -enhanced TiO 2 nanoparticles with a high-performance photocatalysis. Journal of Catalysis, 2013, 297, 236-243.	6.2	266