Ewa Sikora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2927134/publications.pdf

Version: 2024-02-01

114278 94269 4,340 87 37 63 citations h-index g-index papers 90 90 90 6060 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sirtuins, a promising target in slowing down the ageing process. Biogerontology, 2017, 18, 447-476.	2.0	325
2	Impact of cellular senescence signature on ageing research. Ageing Research Reviews, 2011, 10, 146-152.	5.0	233
3	MARK-AGE biomarkers of ageing. Mechanisms of Ageing and Development, 2015, 151, 2-12.	2.2	189
4	Induction of senescence with doxorubicin leads to increased genomic instability of HCT116 cells. Mechanisms of Ageing and Development, 2009, 130, 24-32.	2.2	150
5	Curcumin induces permanent growth arrest of human colon cancer cells: Link between senescence and autophagy. Mechanisms of Ageing and Development, 2012, 133, 444-455.	2.2	129
6	Cellular Senescence in Brain Aging. Frontiers in Aging Neuroscience, 2021, 13, 646924.	1.7	129
7	A Novel Apoptosis-like Pathway, Independent of Mitochondria and Caspases, Induced by Curcumin in Human Lymphoblastoid T (Jurkat) Cells. Experimental Cell Research, 1999, 249, 299-307.	1.2	126
8	Apoptosis-like, reversible changes in plasma membrane asymmetry and permeability, and transient modifications in mitochondrial membrane potential induced by curcumin in rat thymocytes. FEBS Letters, 1998, 433, 287-293.	1.3	114
9	What evidence is there for the existence of individual genes with antagonistic pleiotropic effects?. Mechanisms of Ageing and Development, 2005, 126, 421-429.	2.2	109
10	A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta. Biogerontology, 2014, 15, 47-64.	2.0	105
11	Polyploidy Formation in Doxorubicin-Treated Cancer Cells Can Favor Escape from Senescence. Neoplasia, 2015, 17, 882-893.	2.3	102
12	Inhibition of proliferation and apoptosis of human and rat T lymphocytes by curcumin, a curry pigment. Biochemical Pharmacology, 1997, 54, 899-907.	2.0	101
13	Is senescence-associated \hat{l}^2 -galactosidase a marker of neuronal senescence?. Oncotarget, 2016, 7, 81099-81109.	0.8	94
14	The Role of Curcumin in the Modulation of Ageing. International Journal of Molecular Sciences, 2019, 20, 1239.	1.8	93
15	Genetics of Healthy Aging in Europe: The EU-Integrated Project GEHA (GEnetics of Healthy Aging). Annals of the New York Academy of Sciences, 2007, 1100, 21-45.	1.8	85
16	Curcumin Affects Components of the Chromosomal Passenger Complex and Induces Mitotic Catastrophe in Apoptosis-Resistant Bcr-Abl-Expressing Cells. Molecular Cancer Research, 2006, 4, 457-469.	1.5	83
17	TMA, A Forgotten Uremic Toxin, but Not TMAO, Is Involved in Cardiovascular Pathology. Toxins, 2019, 11, 490.	1.5	81
18	Curcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated DNase endonuclease in human Jurkat cells. Molecular Cancer Therapeutics, 2006, 5, 927-934.	1.9	74

#	Article	IF	CITATIONS
19	Cellular Senescence in Ageing, Age-Related Disease and Longevity. Current Vascular Pharmacology, 2013, 12, 698-706.	0.8	74
20	Diversity of the Senescence Phenotype of Cancer Cells Treated with Chemotherapeutic Agents. Cells, 2019, 8, 1501.	1.8	72
21	Morphological and Functional Characteristic of Senescent Cancer Cells. Current Drug Targets, 2016, 17, 377-387.	1.0	72
22	Effect of glutathione depletion on caspase-3 independent apoptosis pathway induced by curcumin in Jurkat cells. Free Radical Biology and Medicine, 2001, 31, 670-678.	1.3	71
23	Cellular Senescence in Age-Related Macular Degeneration: Can Autophagy and DNA Damage Response Play a Role?. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-15.	1.9	68
24	Is DNA damage indispensable for stress-induced senescence?. Mechanisms of Ageing and Development, 2018, 170, 13-21.	2.2	66
25	Proliferation and apoptosis of human CD8+CD28+ and CD8+CD28â [^] lymphocytes during aging. Experimental Gerontology, 2004, 39, 539-544.	1.2	65
26	Early loss of proliferative potential of human peritoneal mesothelial cells in culture: the role of p16INK4a-mediated premature senescence. Journal of Applied Physiology, 2006, 100, 988-995.	1.2	64
27	Age-dependent expression of <i>DNMT1 </i> and <i>DNMT3B </i> in PBMCs from a large European population enrolled in the MARK-AGE study. Aging Cell, 2016, 15, 755-765.	3.0	60
28	A common signature of cellular senescence; does it exist?. Ageing Research Reviews, 2021, 71, 101458.	5.0	52
29	Plasma Carotenoids, Tocopherols, and Retinol in the Age-Stratified (35–74 Years) General Population: A Cross-Sectional Study in Six European Countries. Nutrients, 2016, 8, 614.	1.7	48
30	P-glycoprotein expression does not change the apoptotic pathway induced by curcumin in HL-60 cells. Cancer Chemotherapy and Pharmacology, 2004, 53, 179-185.	1.1	46
31	Effect of Curcumin on the Apoptosis of Rodent and Human Nonproliferating and Proliferating Lymphoid Cells. Nutrition and Cancer, 2000, 38, 131-138.	0.9	45
32	Loss of transcription factor AP-1 DNA binding activity during lymphocyte aging in vivo. FEBS Letters, 1992, 312, 179-182.	1.3	43
33	Resistance to apoptosis of HCW-2 cells can be overcome by curcumin- or vincristine-induced mitotic catastrophe. International Journal of Cancer, 2006, 119, 1811-1818.	2.3	42
34	Curcumin induces oxidation-dependent cell cycle arrest mediated by SIRT7 inhibition of rDNA transcription in human aortic smooth muscle cells. Toxicology Letters, 2015, 233, 227-238.	0.4	41
35	Curcumin elevates sirtuin level but does not postpone <i>in vitro</i> senescence of human cells building the vasculature. Oncotarget, 2016, 7, 19201-19213.	0.8	41
36	Gender- and age-dependencies of oxidative stress, as detected based on the steady state concentrations of different biomarkers in the MARK-AGE study. Redox Biology, 2019, 24, 101204.	3.9	41

#	Article	IF	Citations
37	NOX4 downregulation leads to senescence of human vascular smooth muscle cells. Oncotarget, 2016, 7, 66429-66443.	0.8	39
38	Curcumin Induces Caspaseâ€3â€Independent Apoptosis in Human Multidrugâ€Resistant Cells. Annals of the New York Academy of Sciences, 2002, 973, 250-254.	1.8	38
39	Activation-induced and damage-induced cell death in aging human T cells. Mechanisms of Ageing and Development, 2015, 151, 85-92.	2.2	38
40	Targeting normal and cancer senescent cells as a strategy of senotherapy. Ageing Research Reviews, 2019, 55, 100941.	5.0	37
41	Trimethylamine But Not Trimethylamine Oxide Increases With Age in Rat Plasma and Affects Smooth Muscle Cells Viability. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1276-1283.	1.7	37
42	"Mitotic Slippage―and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres. International Journal of Molecular Sciences, 2020, 21, 2779.	1.8	36
43	Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study. Aging, 2016, 8, 1896-1922.	1.4	36
44	Curcumin-treated cancer cells show mitotic disturbances leading to growth arrest and induction of senescence phenotype. International Journal of Biochemistry and Cell Biology, 2016, 74, 33-43.	1.2	35
45	Activation of a low pH-dependent nuclease by apoptotic agents. Cell Death and Differentiation, 1999, 6, 281-289.	5.0	34
46	Curcumin induces senescence of primary human cells building the vasculature in a DNA damage and ATM-independent manner. Age, 2015, 37, 9744.	3.0	34
47	Associations between Specific Redox Biomarkers and Age in a Large European Cohort: The MARK-AGE Project. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	1.9	34
48	Therapy-induced polyploidization and senescence: Coincidence or interconnection?. Seminars in Cancer Biology, 2022, 81, 83-95.	4.3	34
49	Combination of dasatinib and quercetin improves cognitive abilities in aged male Wistar rats, alleviates inflammation and changes hippocampal synaptic plasticity and histone H3 methylation profile. Aging, 2022, 14, 572-595.	1.4	34
50	Czym jest i czym nie jest starzenie komórki?. Postepy Biochemii, 2018, 64, 110-118.	0.5	31
51	DNA damage-independent apoptosis induced by curcumin in normal resting human T cells and leukaemic Jurkat cells. Mutagenesis, 2013, 28, 411-416.	1.0	30
52	MARK-AGE population: From the human model to new insights. Mechanisms of Ageing and Development, 2015, 151, 13-17.	2.2	29
53	Antioxidants linked with physical, cognitive and psychological frailty: Analysis of candidate biomarkers and markers derived from the MARK-AGE study. Mechanisms of Ageing and Development, 2019, 177, 135-143.	2.2	29
54	Improved Autophagic Flux in Escapers from Doxorubicin-Induced Senescence/Polyploidy of Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 6084.	1.8	29

#	Article	IF	Citations
55	Rejuvenation of senescent cells—The road to postponing human aging and age-related disease?. Experimental Gerontology, 2013, 48, 661-666.	1.2	28
56	Insight into the role of PIKK family members and NF-аB in DNAdamage-induced senescence and senescence-associated secretory phenotype of colon cancer cells. Cell Death and Disease, 2018, 9, 44.	2.7	28
57	Microbiome in Blood Samples From the General Population Recruited in the MARK-AGE Project: A Pilot Study. Frontiers in Microbiology, 2021, 12, 707515.	1.5	27
58	Curcumin abolishes apoptosis resistance of calcitriol-differentiated HL-60 cells. FEBS Letters, 2006, 580, 4653-4660.	1.3	26
59	Simultaneous induction and blockade of autophagy by a single agent. Cell Death and Disease, 2018, 9, 353.	2.7	26
60	Polyploid giant cancer cells: An emerging new field of cancer biology. Seminars in Cancer Biology, 2022, 81, 1-4.	4.3	25
61	Methotrexate-induced senescence in human adenocarcinoma cells is accompanied by induction of p21waf1/cip1 expression and lack of polyploidy. Cancer Letters, 2009, 284, 95-101.	3.2	23
62	ATM-deficient neural precursors develop senescence phenotype with disturbances in autophagy. Mechanisms of Ageing and Development, 2020, 190, 111296.	2.2	20
63	Proliferation of CD8+ in culture of human T cells derived from peripheral blood of adult donors and cord blood of newborns. Mechanisms of Ageing and Development, 2003, 124, 379-387.	2.2	17
64	Inhibition of NADPH Oxidases Activity by Diphenyleneiodonium Chloride as a Mechanism of Senescence Induction in Human Cancer Cells. Antioxidants, 2020, 9, 1248.	2.2	15
65	Quality control data of physiological and immunological biomarkers measured in serum and plasma. Mechanisms of Ageing and Development, 2015, 151, 54-59.	2.2	14
66	Zinc-Induced Metallothionein in Centenarian Offspring From a Large European Population: The MARK-AGE Project. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 745-753.	1.7	13
67	Prevalence and Loads of Torquetenovirus in the European MARK-AGE Study Population. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1838-1845.	1.7	13
68	Resveratrol Derivative, 3,3′,4,4′-Tetrahydroxy- <i>trans</i> -Stilbene, Retards Senescence of Mesothelial Cells via Hormetic-Like Prooxidative Mechanism. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1169-1180.	1.7	12
69	Oxidative stress and inhibition of nitric oxide generation underlie methotrexate-induced senescence in human colon cancer cells. Mechanisms of Ageing and Development, 2018, 170, 22-29.	2.2	12
70	Age, Sex, and BMI Influence on Copper, Zinc, and Their Major Serum Carrier Proteins in a Large European Population Including Nonagenarian Offspring From MARK-AGE Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 2097-2106.	1.7	12
71	The Role of Nibrin in Doxorubicin-Induced Apoptosis and Cell Senescence in Nijmegen Breakage Syndrome Patients Lymphocytes. PLoS ONE, 2014, 9, e104964.	1.1	11
72	Chromatin-Directed Proteomics Identifies ZNF84 as a p53-Independent Regulator of p21 in Genotoxic Stress Response. Cancers, 2021, 13, 2115.	1.7	11

#	Article	IF	CITATIONS
73	Curcumin induces multiple signaling pathways leading to vascular smooth muscle cell senescence. Biogerontology, 2019, 20, 783-798.	2.0	10
74	The role of autophagy in escaping therapy-induced polyploidy/senescence. Advances in Cancer Research, 2021, 150, 209-247.	1.9	9
75	The role of gender and labour status in immunosenescence of 65+ Polish population. Biogerontology, 2017, 18, 581-590.	2.0	7
76	Utilizing Genome-Wide mRNA Profiling to Identify the Cytotoxic Chemotherapeutic Mechanism of Triazoloacridone C-1305 as Direct Microtubule Stabilization. Cancers, 2020, 12, 864.	1.7	5
77	Medication Intake Is Associated with Lower Plasma Carotenoids and Higher Fat-Soluble Vitamins in the Cross-Sectional MARK-AGE Study in Older Individuals. Journal of Clinical Medicine, 2020, 9, 2072.	1.0	4
78	Ageing affects subtelomeric DNA methylation in blood cells from a large European population enrolled in the MARK-AGE study. GeroScience, 2021, 43, 1283-1302.	2.1	4
79	Do low molecular weight antioxidants contribute to the Protection against oxidative damage? The interrelation between oxidative stress and low molecular weight antioxidants based on data from the MARK-AGE study. Archives of Biochemistry and Biophysics, 2021, 713, 109061.	1.4	4
80	Replicative Senescence of Interleukinâ€2â€Dependent Human T Lymphocytes: Flow Cytometric Characteristics of Phenotype Changes. Annals of the New York Academy of Sciences, 2000, 908, 310-314.	1.8	3
81	Antigen presentation capability and AP-1 activation accompany methotrexate-induced colon cancer cell senescence in the context of aberrant \hat{l}^2 -catenin signaling. Mechanisms of Ageing and Development, 2021, 197, 111517.	2.2	3
82	Activation-Induced Cell Death of T Cells in Human Aging. , 2018, , 1-20.		0
83	In Vitro and in Vivo Effects of Alkyl Nitrites on Methionine Synthase from Mouse Kidney and Liver. Pteridines, $1989,1,.$	0.5	O
84	Activation-Induced Cell Death of T Cells in Human Aging. , 2019, , 533-552.		0
85	Abstract P3021: Trimethylamine but Not Trimethylamine N-Oxide Increases Blood Pressure in Rats, Affects Viability of Vascular Smooth Muscle Cells and Degrades Protein Structure. Hypertension, 2019, 74, .	1.3	0
86	Activation-Induced Cell Death of T-Cells in Elderly. , 2009, , 277-290.		0
87	Association between fat-soluble vitamins and self-reported health status: a cross-sectional analysis of the MARK-AGE cohort. British Journal of Nutrition, 2022, 128, 433-443.	1.2	O