Tatiana Tilli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2927062/publications.pdf

Version: 2024-02-01

623734 610901 29 676 14 24 citations h-index g-index papers 29 29 29 871 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Biotechnological Evolution of siRNA Molecules: From Bench Tool to the Refined Drug. Pharmaceuticals, 2022, 15, 575.	3.8	11
2	Fibromodulin Gene Variants (FMOD) as Potential Biomarkers for Prostate Cancer and Benign Prostatic Hyperplasia. Disease Markers, 2022, 2022, 1-8.	1.3	3
3	Pieces of the Complex Puzzle of Cancer Cell Energy Metabolism: An Overview of Energy Metabolism and Alternatives for Targeted Cancer Therapy. Current Medicinal Chemistry, 2021, 28, 3514-3534.	2.4	4
4	Epidermal growth factor receptor regulates fibrinolytic pathway elements in cervical cancer: functional and prognostic implications. Brazilian Journal of Medical and Biological Research, 2021, 54, e10754.	1.5	2
5	Precision Medicine: Technological Impact into Breast Cancer Diagnosis, Treatment and Decision Making. Journal of Personalized Medicine, 2021, 11, 1348.	2.5	5
6	Positive crosstalk between EGFR and the TF-PAR2 pathway mediates resistance to cisplatin and poor survival in cervical cancer. Oncotarget, 2018, 9, 30594-30609.	1.8	37
7	The Challenge of Translating System Biology into Targeted Therapy of Cancer. Computational Biology, 2018, , 175-194.	0.2	1
8	Ion Channel and Neurotransmitter Modulators as Electroceutical Approaches to the Control of Cancer. Current Pharmaceutical Design, 2017, 23, 4827-4841.	1.9	32
9	Chemical synthesis, pharmacological evaluation and in silico analysis of new 2,3,3a,4,5,6-hexahydrocyclopenta[c]pyrazole derivatives as potential anti-mitotic agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3855-3861.	2.2	8
10	A strategy to identify housekeeping genes suitable for analysis in breast cancer diseases. BMC Genomics, 2016, 17, 639.	2.8	47
11	Antitumor Activity of Lankacidin Group Antibiotics Is Due to Microtubule Stabilization via a Paclitaxel-like Mechanism. Journal of Medicinal Chemistry, 2016, 59, 9532-9540.	6.4	23
12	Toward precision medicine of breast cancer. Theoretical Biology and Medical Modelling, 2016, 13, 7.	2.1	48
13	Osteopontin splice variants expression is involved on docetaxel resistance in PC3 prostate cancer cells. Tumor Biology, 2016, 37, 2655-2663.	1.8	27
14	Validation of a network-based strategy for the optimization of combinatorial target selection in breast cancer therapy: siRNA knockdown of network targets in MDA-MB-231 cells as an <i>in vitro</i> model for inhibition of tumor development. Oncotarget, 2016, 7, 63189-63203.	1.8	49
15	Optimization of combination chemotherapy based on the calculation of network entropy for protein-protein interactions in breast cancer cell lines. EPJ Nonlinear Biomedical Physics, 2015, 3, .	0.8	22
16	A Computational Strategy to Select Optimized Protein Targets for Drug Development toward the Control of Cancer Diseases. PLoS ONE, 2015, 10, e0115054.	2.5	40
17	Osteopontin-c mediates the upregulation of androgen responsive genes in LNCaP cells through PI3K/Akt and androgen receptor signaling. Oncology Letters, 2015, 9, 1845-1850.	1.8	8
18	Changes in the transcriptional profile in response to overexpression of the osteopontin-c splice isoform in ovarian (OvCar-3) and prostate (PC-3) cancer cell lines. BMC Cancer, 2014, 14, 433.	2.6	22

#	Article	IF	CITATIONS
19	Abstract 1346: Osteopontin-b and Osteopontin-c splicing isofoms activate prostate cancer cells prosurvival features. , 2014, , .		O
20	Human osteopontin splicing isoforms: Known roles, potential clinical applications and activated signaling pathways. Cancer Letters, 2013, 331, 11-17.	7.2	101
21	Abstract B78: Osteopontin-c splicing isoform is a key molecule in ovarian cancer progression. , 2013, , .		O
22	Both osteopontinâ€c and osteopontinâ€b splicing isoforms exert proâ€tumorigenic roles in prostate cancer cells. Prostate, 2012, 72, 1688-1699.	2.3	48
23	Expression analysis of osteopontin mRNA splice variants in prostate cancer and benign prostatic hyperplasia. Experimental and Molecular Pathology, 2012, 92, 13-19.	2.1	38
24	Abstract 89: Osteopontin-c and osteopontin-b splicing isoforms activate prostate cancer progression features. , 2012, , .		2
25	Osteopontin is a tumor autoantigen in prostate cancer patients. Oncology Letters, 2011, 2, 109-114.	1.8	10
26	Osteopontin-c Splicing Isoform Contributes to Ovarian Cancer Progression. Molecular Cancer Research, 2011, 9, 280-293.	3.4	81
27	Abstract 5256: Osteopontin-c and Osteopontin-b splicing isoforms activate important hallmarks of cancer contributing to prostate carcinoma progression. , 2011 , , .		O
28	Abstract 1194: The splicing isoform osteopontin-c contributes to ovarian cancer progression. , 2010, , .		0
29	Analysis of Inherited Genetic Variants in ret Proto-Oncogene of Brazilian Patients with Apparently Sporadic Medullary Thyroid Carcinoma. Thyroid, 2006, 16, 9-15.	4.5	7