Daobin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/292663/publications.pdf

Version: 2024-02-01

	471061	500791
810	17	28
citations	h-index	g-index
36	36	1019
docs citations	times ranked	citing authors
		810 17 citations h-index 36 36

#	Article	IF	CITATIONS
1	Two star-shaped small molecule donors based on benzodithiophene unit for organic solar cells. Chinese Chemical Letters, 2022, 33, 247-251.	4.8	21
2	Crystallinity modulation of donors by heteroatom side-chain engineering and solvent additive achieving 14.3% all-small-molecule organic solar cells. Journal of Materials Chemistry A, 2022, 10, 9635-9642.	5.2	15
3	Modulation of the Fluorination Site on Side-Chain Thiophene Improved Efficiency in All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33234-33241.	4.0	12
4	Achieving 10% efficiency in non-fullerene all-small-molecule organic solar cells without extra treatments. Journal of Materials Chemistry A, 2021, 9, 10427-10436.	5.2	15
5	Achieving 18.14% Efficiency of Ternary Organic Solar Cells with Alloyed Nonfullerene Acceptor. Small Structures, 2021, 2, 2100099.	6.9	16
6	High-Efficiency Thermal-Annealing-Free Organic Solar Cells Based on an Asymmetric Acceptor with Improved Thermal and Air Stability. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57271-57280.	4.0	44
7	Perovskite Solar Cells: Achieving 20% Efficiency for Lowâ€Temperatureâ€Processed Inverted Perovskite Solar Cells (Adv. Funct. Mater. 12/2019). Advanced Functional Materials, 2019, 29, 1970074.	7.8	1
8	Elucidating the impact of N-arylanilino substituents of squaraines on their photovoltaic performances. Organic Electronics, 2019, 66, 188-194.	1.4	4
9	A novel π-D1-A-D2 type low bandgap squaraine dye for efficient small molecular organic solar cells. Dyes and Pigments, 2019, 163, 564-572.	2.0	9
10	Achieving 20% Efficiency for Lowâ€Temperatureâ€Processed Inverted Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807556.	7.8	68
11	Central dicyanomethylene-substituted unsymmetrical squaraines and their application in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 5797-5806.	5.2	25
12	Synthesis of 3 <i>H</i> â€Benzo[e]indoline and Its Application to Smallâ€Molecule Organic Solar Cells. Chemistry - A European Journal, 2018, 24, 8747-8750.	1.7	15
13	Effects of different types of unsymmetrical squaraines on the material properties and Coulomb interactions in organic photovoltaic devices. Materials Chemistry Frontiers, 2018, 2, 2116-2123.	3.2	4
14	A minimal non-radiative recombination loss for efficient non-fullerene all-small-molecule organic solar cells with a low energy loss of 0.54ÂeV and high open-circuit voltage of 1.15 V. Journal of Materials Chemistry A, 2018, 6, 13918-13924.	5.2	62
15	Colorful Squaraines Dyes for Efficient Solution-Processed All Small-Molecule Semitransparent Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26465-26472.	4.0	28
16	The influence of intramolecular noncovalent interactions in unsymmetrical squaraines on material properties, film morphologyÂand photovoltaic performance. Dyes and Pigments, 2017, 145, 222-232.	2.0	19
17	Low-Band-Gap Small Molecule for Efficient Organic Solar Cells with a Low Energy Loss below 0.6 eV and a High Open-Circuit Voltage of over 0.9 V. ACS Energy Letters, 2017, 2, 2021-2025.	8.8	61
18	Two different donor subunits substituted unsymmetrical squaraines for solution-processed small molecule organic solar cells. Organic Electronics, 2016, 32, 179-186.	1.4	13

#	Article	IF	CITATIONS
19	An Azuleneâ€Containing Low Bandgap Small Molecule for Organic Photovoltaics with High Openâ€Circuit Voltage. Chemistry - A European Journal, 2016, 22, 14527-14530.	1.7	32
20	An effective π-extended squaraine for solution-processed organic solar cells with high efficiency. Journal of Materials Chemistry A, 2016, 4, 18931-18941.	5.2	30
21	Unsymmetrical squaraines with new linkage manner for high-performance solution-processed small-molecule organic photovoltaic cells. RSC Advances, 2016, 6, 1877-1884.	1.7	12
22	Influence of the length of alkyl substituents on the morphology of the active layer of photovoltaic devices using squaraine as electron donor. Chinese Science Bulletin, 2016, 61, 342-349.	0.4	0
23	Asymmetrical Squaraines Bearing Fluorine-Substituted Indoline Moieties for High-Performance Solution-Processed Small-Molecule Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13675-13684.	4.0	39
24	N,N-Diarylamino end-capping as a new strategy for simultaneously enhancing open-circuit voltage, short-circuit current density and fill factor in small molecule organic solar cells. RSC Advances, 2015, 5, 20724-20733.	1.7	17
25	Asymmetrical squaraines for high-performance small-molecule organic solar cells with a short circuit current of over 12 mA cm ^{â^2} . Chemical Communications, 2015, 51, 6133-6136.	2.2	33
26	Cyano-substitution on the end-capping group: facile access toward asymmetrical squaraine showing strong dipoleâ€"dipole interactions as a high performance small molecular organic solar cells material. Journal of Materials Chemistry A, 2015, 3, 17704-17712.	5. 2	40
27	Synthesis and Photovoltaic Properties of Conjugated Copolymers Bearing bis(9,9-di(2-ethylhexyl)-9H-fluoren-2-yl)quinoxaline Subunit with Deep HOMO Level. Asian Journal of Chemistry, 2014, 26, 5959-5966.	0.1	0
28	UV-ozone-treated MoO 3 as the hole-collecting buffer layer for high-efficiency solution-processed SQ:PC 71 BM photovoltaic devices. Chinese Physics B, 2014, 23, 038405.	0.7	1
29	Marked effects of indolyl vs. indolinyl substituent on solid-state structure, carrier mobility and photovoltaic efficiency of asymmetrical squaraine dyes. Journal of Materials Chemistry A, 2014, 2, 18313-18321.	5. 2	28
30	Self-assembled nanopillar arrays by simple spin coating from blending systems comprising PC61BM and conjugated polymers with special structure. RSC Advances, 2014, 4, 24316-24319.	1.7	3
31	A low bandgap asymmetrical squaraine for high-performance solution-processed small molecule organic solar cells. Chemical Communications, 2014, 50, 9346-9348.	2.2	36
32	Synthesis and characterization of 4â€dodecyloxyphenyl and (4′â€dodecyloxyâ€4â€biphenyl)methyleneâ€substituted bispyrrolylvinylthiopheneâ€based polysquaraines havi good solubility and very low bandgap for light absorption. Journal of Applied Polymer Science, 2013, 128, 1632-1639.	ng £3	4
33	Novel high performance asymmetrical squaraines for small molecule organic solar cells with a high open circuit voltage of 1.12 V. Chemical Communications, 2013, 49, 10465.	2.2	48
34	The improved performance of solution-processed SQ:PC71BM photovoltaic devices via MoO3 as the anode modification layer. Applied Surface Science, 2013, 284, 849-854.	3.1	15
35	Novel conjugated polymers with planar backbone bearing acenaphtho[1,2-b]quinoxaline acceptor subunit for polymer solar cells. Synthetic Metals, 2013, 175, 21-29.	2.1	17
36	Novel high-performance photovoltaic D–A conjugated polymers bearing 1,2-squaraine moieties as electron-deficient units. Solar Energy Materials and Solar Cells, 2012, 105, 220-228.	3.0	23