## Tatiana Cañeque Cobo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2926601/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nature Chemistry, 2017, 9, 1025-1033.                                                                                             | 13.6 | 423       |
| 2  | PML-Regulated Mitochondrial Metabolism Enhances Chemosensitivity in Human Ovarian Cancers. Cell<br>Metabolism, 2019, 29, 156-173.e10.                                                                    | 16.2 | 174       |
| 3  | Visualizing biologically active small molecules in cells using click chemistry. Nature Reviews<br>Chemistry, 2018, 2, 202-215.                                                                           | 30.2 | 133       |
| 4  | CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nature Chemistry, 2020, 12, 929-938.                                                                                                 | 13.6 | 132       |
| 5  | Click chemistry enables preclinical evaluation of targeted epigenetic therapies. Science, 2017, 356, 1397-1401.                                                                                          | 12.6 | 120       |
| 6  | A V-shaped cationic dye for nonlinear optical bioimaging. Chemical Communications, 2011, 47, 7374.                                                                                                       | 4.1  | 64        |
| 7  | Electrophilic activation of allenenes and allenynes: analogies and differences between BrÃ,nsted and Lewis acid activation. Chemical Society Reviews, 2014, 43, 2916-2926.                               | 38.1 | 62        |
| 8  | DMT1 Inhibitors Kill Cancer Stem Cells by Blocking Lysosomal Iron Translocation. Chemistry - A<br>European Journal, 2020, 26, 7369-7373.                                                                 | 3.3  | 61        |
| 9  | Hepatocyte nuclear factor $1\hat{l}_{\pm}$ suppresses steatosis-associated liver cancer by inhibiting PPAR $\hat{l}^3$ transcription. Journal of Clinical Investigation, 2017, 127, 1873-1888.           | 8.2  | 58        |
| 10 | Salinomycin Derivatives Kill Breast Cancer Stem Cells by Lysosomal Iron Targeting. Chemistry - A<br>European Journal, 2020, 26, 7416-7424.                                                               | 3.3  | 57        |
| 11 | An iron hand over cancer stem cells. Autophagy, 2017, 13, 1465-1466.                                                                                                                                     | 9.1  | 43        |
| 12 | Synthesis of marmycin A and investigation into its cellular activity. Nature Chemistry, 2015, 7, 744-751.                                                                                                | 13.6 | 41        |
| 13 | Nonlinear Emission of Quinolizinium-Based Dyes with Application in Fluorescence Lifetime Imaging.<br>Journal of Physical Chemistry A, 2015, 119, 2351-2362.                                              | 2.5  | 33        |
| 14 | Catalytic Semireduction of Internal Alkynes with Allâ€Metal Aromatic Complexes. ChemCatChem, 2015, 7,<br>3266-3269.                                                                                      | 3.7  | 30        |
| 15 | Alternative Routes to Tricyclic Cyclohexenes with Trinuclear Palladium Complexes. ACS Catalysis, 2018, 8, 144-147.                                                                                       | 11.2 | 30        |
| 16 | Iron-Sensitive Prodrugs That Trigger Active Ferroptosis in Drug-Tolerant Pancreatic Cancer Cells.<br>Journal of the American Chemical Society, 2022, 144, 11536-11545.                                   | 13.7 | 29        |
| 17 | Novel charged NLO chromophores based on quinolizinium acceptor units. Dyes and Pigments, 2014, 101, 116-121.                                                                                             | 3.7  | 27        |
| 18 | Click Quantitative Mass Spectrometry Identifies PIWIL3 as a Mechanistic Target of RNA Interference<br>Activator Enovacin in Cancer Cells, Journal of the American Chemical Society, 2017, 139, 1400-1403 | 13.7 | 27        |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Family-wide Analysis of the Inhibition of Arf Guanine Nucleotide Exchange Factors with Small<br>Molecules: Evidence of Unique Inhibitory Profiles. Biochemistry, 2017, 56, 5125-5133. | 2.5 | 25        |
| 20 | A Simple Synthesis of Triangular Allâ€Metal Aromatics Allowing Access to Isolobal Allâ€Metal<br>Heteroaromatics. Chemistry - A European Journal, 2015, 21, 12271-12274.               | 3.3 | 24        |
| 21 | Quinolizinium as a new fluorescent lysosomotropic probe. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 203-207.                                                               | 2.2 | 22        |
| 22 | Chemical biology of salinomycin. Tetrahedron, 2018, 74, 5585-5614.                                                                                                                    | 1.9 | 22        |
| 23 | PH-domain-binding inhibitors of nucleotide exchange factor BRAG2 disrupt Arf GTPase signaling.<br>Nature Chemical Biology, 2019, 15, 358-366.                                         | 8.0 | 22        |
| 24 | Palladium-Mediated Functionalization of Heteroaromatic Cations:Â Comparative Study on<br>Quinolizinium Cations. Journal of Organic Chemistry, 2006, 71, 7989-7995.                    | 3.2 | 21        |
| 25 | Targeting Cancer Stem Cells with Small Molecules. Israel Journal of Chemistry, 2017, 57, 239-250.                                                                                     | 2.3 | 19        |
| 26 | Metformin reveals a mitochondrial copper addiction of mesenchymal cancer cells. PLoS ONE, 2018, 13, e0206764.                                                                         | 2.5 | 19        |
| 27 | Effects of iron modulation on mesenchymal stem cell-induced drug resistance in estrogen receptor-positive breast cancer. Oncogene, 2022, 41, 3705-3718.                               | 5.9 | 19        |
| 28 | Pd Catalysis in Cyanide-Free Synthesis of Nitriles from Haloarenes via Isoxazolines. Organic Letters,<br>2016, 18, 6108-6111.                                                         | 4.6 | 18        |
| 29 | Pharmacologic Reduction of Mitochondrial Iron Triggers a Noncanonical BAX/BAK-Dependent Cell<br>Death. Cancer Discovery, 2022, 12, 774-791.                                           | 9.4 | 18        |
| 30 | Efficient functionalization of quinolizinium cations with organotrifluoroborates in water.<br>Tetrahedron Letters, 2009, 50, 1419-1422.                                               | 1.4 | 17        |
| 31 | Targeting Cellular Iron Homeostasis with Ironomycin in Diffuse Large B-cell Lymphoma. Cancer<br>Research, 2022, 82, 998-1012.                                                         | 0.9 | 14        |
| 32 | Heteroaromatic Cationâ€Based Chromophores: Synthesis and Nonlinear Optical Properties of<br>Alkynylazinium Salts. European Journal of Organic Chemistry, 2010, 2010, 6323-6330.       | 2.4 | 11        |
| 33 | Azonia aromatic heterocycles as a new acceptor unit in D-Ï€-A + vs D-A + nonlinear optical chromophores. Dyes and Pigments, 2017, 144, 17-31.                                         | 3.7 | 11        |
| 34 | Cucurbit[n]urils as a potential fine-tuned instrument for modifying photophysical properties of<br>D–݀–A+–݀–D "push–pull―chromophores. Dyes and Pigments, 2014, 103, 106-117.         | 3.7 | 6         |
| 35 | Iron-dependent lysosomal dysfunction mediated by a natural product hybrid. Chemical Communications, 2016, 52, 1358-1360.                                                              | 4.1 | 6         |
| 36 | A Synthetic Study towards the Marmycins and Analogues. Synthesis, 2017, 49, 587-592.                                                                                                  | 2.3 | 6         |

## Tatiana Cañeque Cobo

| #  | Article                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Rapid and Convergent Assembly of Natural Benzo[c]phenanthridines by Palladium/Norbornene<br>Catalysis. Heterocycles, 2014, 88, 807.           | 0.7  | 5         |
| 38 | Diverse engineering. Nature Chemistry, 2019, 11, 499-500.                                                                                     | 13.6 | 3         |
| 39 | Small Molecule Regulators of Ferroptosis. Advances in Experimental Medicine and Biology, 2021, 1301, 81-121.                                  | 1.6  | 3         |
| 40 | Expeditive Synthesis of Potent C20-epi-Amino Derivatives of Salinomycin against Cancer Stem-Like Cells.<br>ACS Organic & Inorganic Au, 0, , . | 4.0  | 2         |
| 41 | Reprogramming the chemical reactivity of iron in cancer stem cells. Comptes Rendus Chimie, 2018, 21, 704-708.                                 | 0.5  | 1         |
| 42 | Novel linear and V-shaped D-ï€-A+-ï€-D chromophores by Sonogashira reaction. Arkivoc, 2011, 2011, 140-155.                                    | 0.5  | 1         |
| 43 | Rapid Access to Ironomycin Derivatives by Click Chemistry. ACS Organic & Inorganic Au, 0, , .                                                 | 4.0  | 1         |
| 44 | 2nd PSL Chemical Biology Symposium (2019): At the Crossroads of Chemistry and Biology.<br>ChemBioChem, 2019, 20, 968-973.                     | 2.6  | 0         |
| 45 | Ironomycin Induces Diffuse Large B-Cell Lymphoma Cell Death By Targeting Iron Metabolism Addiction.<br>Blood, 2019, 134, 3960-3960.           | 1.4  | 0         |