Dhaval S Patel

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/2926577/publications.pdf
Version: 2024-02-01

1

 2Clustering of Genetically Defined Allele Classes in the <i>Caenorhabditis elegans</i> DAF-2 Insulin/IGF-1 Receptor. Genetics, 2008, 178, 931-946.

3	A gene-expression-based neural code for food abundance that modulates lifespan. ELife, 2015, 4, e06259.	2.8	53
4	Genetic identification of HSD-1, a conserved steroidogenic enzyme that directs larval development in Caenorhabditis elegans. Development (Cambridge), 2008, 135, 2239-2249.	1.2	52
5	An automated platform to monitor long-term behavior and healthspan in Caenorhabditis elegans under precise environmental control. Communications Biology, 2020, 3, 297.	2.0	37
6	Graphical-model framework for automated annotation of cell identities in dense cellular images. ELife, 2021, 10, .	2.8	23
7	RILM: a web-based resource to aid comparative and functional analysis of the insulin and IGF-1 receptor family. Human Mutation, 2007, 28, 660-668.	1.1	13
8	smFISH in chips: a microfluidic-based pipeline to quantify in situ gene expression in whole organisms. Lab on A Chip, 2020, 20, 266-273.	3.1	9
9	Genetic control of encoding strategy in a food-sensing neural circuit. ELife, 2017, 6,	2.8	7

10 Quantification of Information Encoded by Gene Expression Levels During Lifespan Modulation Under Broad-range Dietary Restriction in C. elegans<lem>. Journal of Visualized Experiments, 2017, , .

Digging deeper: methodologies for high-content phenotyping in Caenorhabditis elegans. Lab Animal, 2019, 48, 207-216.

