## Curtis Huttenhower

# List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2926575/curtis-huttenhower-publications-by-year.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

238 101 247 57,075 h-index g-index citations papers 81,677 276 15.7 7.59 L-index avg, IF ext. papers ext. citations

| #   | Paper                                                                                                                                                                                                | IF   | Citations |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 247 | Strain-level fitness in the gut microbiome is an emergent property of glycans and a single metabolite <i>Cell</i> , <b>2022</b> , 185, 513-529.e21                                                   | 56.2 | 3         |
| 246 | Dietary lignans, plasma enterolactone levels, and metabolic risk in men: exploring the role of the gut microbiome <i>BMC Microbiology</i> , <b>2022</b> , 22, 82                                     | 4.5  | 2         |
| 245 | Human gut bacteria produce ¶7-modulating bile´acid metabolites Nature, 2022,                                                                                                                         | 50.4 | 20        |
| 244 | Association of midlife antibiotic use with subsequent cognitive function in women <i>PLoS ONE</i> , <b>2022</b> , 17, e0264649                                                                       | 3.7  | 1         |
| 243 | Strain identification and quantitative analysis in microbial communities <i>Journal of Molecular Biology</i> , <b>2022</b> , 167582                                                                  | 6.5  | 3         |
| 242 | Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response <i>Science</i> , <b>2021</b> , 374, 1632-1640                                                          | 33.3 | 52        |
| 241 | Density-based binning of gene clusters to infer function or evolutionary history using GeneGrouper. <i>Bioinformatics</i> , <b>2021</b> ,                                                            | 7.2  | 1         |
| 240 | The Gut Microbiome Modifies the Association between a Mediterranean Diet and Diabetes in US Hispanic / Latino Population. <i>Journal of Clinical Endocrinology and Metabolism</i> , <b>2021</b> ,    | 5.6  | 3         |
| 239 | Association Between the Sulfur Microbial Diet and Risk of Colorectal Cancer. <i>JAMA Network Open</i> , <b>2021</b> , 4, e2134308                                                                    | 10.4 | 4         |
| 238 | Multivariable association discovery in population-scale meta-omics studies. <i>PLoS Computational Biology</i> , <b>2021</b> , 17, e1009442                                                           | 5    | 72        |
| 237 | Reporting guidelines for human microbiome research: the STORMS checklist. <i>Nature Medicine</i> , <b>2021</b> , 27, 1885-1892                                                                       | 50.5 | 19        |
| 236 | Of mice and men and women: Sexual dimorphism of the gut microbiome <i>International Journal of Womenls Dermatology</i> , <b>2021</b> , 7, 533-538                                                    | 2    | 0         |
| 235 | The oral microbiome in relation to pancreatic cancer risk in African Americans. <i>British Journal of Cancer</i> , <b>2021</b> ,                                                                     | 8.7  | 2         |
| 234 | Overview of the Microbiome Among Nurses study (Micro-N) as an example of prospective characterization of the microbiome within cohort studies. <i>Nature Protocols</i> , <b>2021</b> , 16, 2724-2731 | 18.8 | 2         |
| 233 | A framework for microbiome science in public health. <i>Nature Medicine</i> , <b>2021</b> , 27, 766-774                                                                                              | 50.5 | 14        |
| 232 | Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: findings from a longitudinal cohort of US men. <i>Gut</i> , <b>2021</b> ,                       | 19.2 | 10        |
| 231 | A polymorphism in the promoter of FRAS1 is a candidate SNP associated with metastatic prostate cancer. <i>Prostate</i> , <b>2021</b> , 81, 683-693                                                   | 4.2  | 1         |

### (2021-2021)

| 230 | Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. <i>ELife</i> , <b>2021</b> , 10,                                                            | 8.9  | 114 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 229 | Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men. <i>Genome Medicine</i> , <b>2021</b> , 13, 102                                                         | 14.4 | 10  |
| 228 | Plant-Based Diet Index and Metabolic Risk in Men: Exploring the Role of the Gut Microbiome. <i>Journal of Nutrition</i> , <b>2021</b> , 151, 2780-2789                                                       | 4.1  | 2   |
| 227 | Statistical approaches for differential expression analysis in metatranscriptomics. <i>Bioinformatics</i> , <b>2021</b> , 37, i34-i41                                                                        | 7.2  | 2   |
| 226 | Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. <i>Annual Review of Biomedical Data Science</i> , <b>2021</b> , 4, 279-311                                        | 5.6  | 7   |
| 225 | The human gut microbiota in people with amyotrophic lateral sclerosis. <i>Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration</i> , <b>2021</b> , 22, 186-194                                      | 3.6  | 16  |
| 224 | A Phase 1b Safety Study of SER-287, a Spore-Based Microbiome Therapeutic, for Active Mild to Moderate Ulcerative Colitis. <i>Gastroenterology</i> , <b>2021</b> , 160, 115-127.e30                           | 13.3 | 25  |
| 223 | Microbiome Biomarkers: One Step Closer in NAFLD Cirrhosis. <i>Hepatology</i> , <b>2021</b> , 73, 2063-2066                                                                                                   | 11.2 | 2   |
| 222 | Identification of Natural CRISPR Systems and Targets in the Human Microbiome. <i>Cell Host and Microbe</i> , <b>2021</b> , 29, 94-106.e4                                                                     | 23.4 | 3   |
| 221 | Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. <i>Microbiome</i> , <b>2021</b> , 9, 17                                                      | 16.6 | 10  |
| 220 | Association of with Specific T-cell Subsets in the Colorectal Carcinoma Microenvironment. <i>Clinical Cancer Research</i> , <b>2021</b> , 27, 2816-2826                                                      | 12.9 | 12  |
| 219 | The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. <i>Nature Medicine</i> , <b>2021</b> , 27, 333-343                                    | 50.5 | 63  |
| 218 | The colorectal cancer-associated faecal microbiome of developing countries resembles that of developed countries. <i>Genome Medicine</i> , <b>2021</b> , 13, 27                                              | 14.4 | 5   |
| 217 | Triclosan Tolerance Is Driven by a Conserved Mechanism in Diverse Species. <i>Applied and Environmental Microbiology</i> , <b>2021</b> , 87,                                                                 | 4.8  | 3   |
| 216 | Microbiome Analysis of More Than 2,000 NHS Bowel Cancer Screening Programme Samples Shows the Potential to Improve Screening Accuracy. <i>Clinical Cancer Research</i> , <b>2021</b> , 27, 2246-2254         | 12.9 | 1   |
| 215 | The Sulfur Microbial Diet Is Associated With Increased Risk of Early-Onset Colorectal Cancer Precursors. <i>Gastroenterology</i> , <b>2021</b> , 161, 1423-1432.e4                                           | 13.3 | 6   |
| 214 | The Sulfur Microbial Diet and Risk of Colorectal Cancer by Molecular Subtypes and Intratumoral Microbial Species in Adult Men. <i>Clinical and Translational Gastroenterology</i> , <b>2021</b> , 12, e00338 | 4.2  | 1   |
| 213 | A statistical model for describing and simulating microbial community profiles. <i>PLoS Computational Biology</i> , <b>2021</b> , 17, e1008913                                                               | 5    | 5   |

| 212 | A bacterial bile acid metabolite modulates T activity through the nuclear hormone receptor NR4A1. <i>Cell Host and Microbe</i> , <b>2021</b> , 29, 1366-1377.e9                                              | 23.4                       | 22           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|
| 211 | Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. <i>Nature Medicine</i> , <b>2021</b> , 27, 321-332                                                   | 50.5                       | 124          |
| 210 | Determinants of Staphylococcus aureus carriage in the developing infant nasal microbiome. <i>Genome Biology</i> , <b>2020</b> , 21, 301                                                                      | 18.3                       | 4            |
| 209 | Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. <i>Nature Communications</i> , <b>2020</b> , 11, 2500                                                 | 17.4                       | 99           |
| 208 | PICRUSt2 for prediction of metagenome functions. <i>Nature Biotechnology</i> , <b>2020</b> , 38, 685-688                                                                                                     | 44.5                       | 696          |
| 207 | The Gut Microbiome Modifies the Protective Effects of a Mediterranean Diet Against Cardiometabolic Disease Risk. <i>Current Developments in Nutrition</i> , <b>2020</b> , 4, 1597-1597                       | 0.4                        | 1            |
| 206 | Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations. <i>Genome Biology</i> , <b>2020</b> , 21, 138     | 18.3                       | 27           |
| 205 | Global chemical effects of the microbiome include new bile-acid conjugations. <i>Nature</i> , <b>2020</b> , 579, 123-1                                                                                       | <b>29</b> 0.4              | 129          |
| 204 | Mobilizable antibiotic resistance genes are present in dust microbial communities. <i>PLoS Pathogens</i> , <b>2020</b> , 16, e1008211                                                                        | 7.6                        | 16           |
| 203 | Growth effects of N-acylethanolamines on gut bacteria reflect altered bacterial abundances in inflammatory bowel disease. <i>Nature Microbiology</i> , <b>2020</b> , 5, 486-497                              | 26.6                       | 25           |
| 202 | Association Between Sulfur-Metabolizing Bacterial Communities in Stool and Risk of Distal Colorectal Cancer in Men. <i>Gastroenterology</i> , <b>2020</b> , 158, 1313-1325                                   | 13.3                       | 50           |
| 201 | Structure of the Mucosal and Stool Microbiome in Lynch Syndrome. Cell Host and Microbe, 2020, 27, 58.                                                                                                        | 5- <b>£</b> 9. <b>₽</b> .€ | <b>.4</b> 20 |
| 200 | Delivery Mode Affects Stability of Early Infant Gut Microbiota. <i>Cell Reports Medicine</i> , <b>2020</b> , 1, 100156                                                                                       | 18                         | 32           |
| 199 | Association of autophagy status with amount of Fusobacterium nucleatum in colorectal cancer.<br>Journal of Pathology, <b>2020</b> , 250, 397-408                                                             | 9.4                        | 16           |
| 198 | Strain-level epidemiology of microbial communities and the human microbiome. <i>Genome Medicine</i> , <b>2020</b> , 12, 71                                                                                   | 14.4                       | 25           |
| 197 | The interleukin-33 receptor contributes to pulmonary responses to ozone in male mice: role of the microbiome. <i>Respiratory Research</i> , <b>2019</b> , 20, 197                                            | 7.3                        | 11           |
| 196 | OP19 Corticosteroid response rectal gene signature and associated microbial variation in treatment na\( \text{Me} \) ulcerative colitis. <i>Journal of Crohnls and Colitis</i> , <b>2019</b> , 13, S013-S014 | 1.5                        |              |
| 195 | Comparative genomics and genome biology of. <i>Emerging Microbes and Infections</i> , <b>2019</b> , 8, 827-840                                                                                               | 18.9                       | 4            |

### (2018-2019)

| 194 | Naturally acquired immunity against immature gametocytes. <i>Science Translational Medicine</i> , <b>2019</b> , 11,                                                                                    | 17.5 | 24   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| 193 | Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. <i>Nature</i> , <b>2019</b> , 569, 655-662                                                                                  | 50.4 | 761  |
| 192 | Bacteroides-Derived Sphingolipids Are Critical for Maintaining Intestinal Homeostasis and Symbiosis. <i>Cell Host and Microbe</i> , <b>2019</b> , 25, 668-680.e7                                       | 23.4 | 112  |
| 191 | Establishing What Constitutes a Healthy Human Gut Microbiome: State of the Science, Regulatory Considerations, and Future Directions. <i>Journal of Nutrition</i> , <b>2019</b> , 149, 1882-1895       | 4.1  | 91   |
| 190 | Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition. <i>Cell Host and Microbe</i> , <b>2019</b> , 26, 252-264.e10                      | 23.4 | 120  |
| 189 | Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. <i>Nature Communications</i> , <b>2019</b> , 10, 3136                                               | 17.4 | 89   |
| 188 | Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. <i>Nature Biotechnology</i> , <b>2019</b> , 37, 852-857                                                      | 44.5 | 4050 |
| 187 | The Prevotella copri Complex Comprises Four Distinct Clades Underrepresented in Westernized Populations. <i>Cell Host and Microbe</i> , <b>2019</b> , 26, 666-679.e7                                   | 23.4 | 141  |
| 186 | Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. <i>Nature Communications</i> , <b>2019</b> , 10, 5477                                             | 17.4 | 89   |
| 185 | Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. <i>Nature Microbiology</i> , <b>2019</b> , 4, 470-479                                       | 26.6 | 97   |
| 184 | Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. <i>Nature Communications</i> , <b>2019</b> , 10, 38 | 17.4 | 98   |
| 183 | Low Tristetraprolin Expression Is Associated with Lethal Prostate Cancer. <i>Cancer Epidemiology Biomarkers and Prevention</i> , <b>2019</b> , 28, 584-590                                             | 4    | 4    |
| 182 | Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. <i>Cell</i> , <b>2019</b> , 176, 649-662.e20                 | 56.2 | 588  |
| 181 | HMP16SData: Efficient Access to the Human Microbiome Project Through Bioconductor. <i>American Journal of Epidemiology</i> , <b>2019</b> , 188, 1023-1026                                              | 3.8  | 21   |
| 180 | Gut microbiome structure and metabolic activity in inflammatory bowel disease. <i>Nature Microbiology</i> , <b>2019</b> , 4, 293-305                                                                   | 26.6 | 512  |
| 179 | Sex Differences in Pulmonary Responses to Ozone in Mice. Role of the Microbiome. <i>American Journal of Respiratory Cell and Molecular Biology</i> , <b>2019</b> , 60, 198-208                         | 5.7  | 28   |
| 178 | A screen of Crohn\$ disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. <i>Mucosal Immunology</i> , <b>2019</b> , 12, 457-467     | 9.2  | 31   |
| 177 | Long-term use of antibiotics and risk of colorectal adenoma. <i>Gut</i> , <b>2018</b> , 67, 672-678                                                                                                    | 19.2 | 93   |

| 176 | bioBakery: a metaSomic analysis environment. <i>Bioinformatics</i> , <b>2018</b> , 34, 1235-1237                                                                                                  | 7.2    | 108 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| 175 | Enterotypes in the landscape of gut microbial community composition. <i>Nature Microbiology</i> , <b>2018</b> , 3, 8-16                                                                           | 26.6   | 387 |
| 174 | Metatranscriptome of human faecal microbial communities in a cohort of adult men. <i>Nature Microbiology</i> , <b>2018</b> , 3, 356-366                                                           | 26.6   | 103 |
| 173 | Stability of the human faecal microbiome in a cohort of adult men. <i>Nature Microbiology</i> , <b>2018</b> , 3, 347-35                                                                           | 5526.6 | 104 |
| 172 | Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. <i>Nature Microbiology</i> , <b>2018</b> , 3, 337-346                                                             | 26.6   | 249 |
| 171 | Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. <i>Gut</i> , <b>2018</b> , 67, 108-119                                | 19.2   | 368 |
| 170 | The Role of Gut Microbiome in the Pathogenesis of Prostate Cancer: A Prospective, Pilot Study. <i>Urology</i> , <b>2018</b> , 111, 122-128                                                        | 1.6    | 81  |
| 169 | Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. <i>Cell Host and Microbe</i> , <b>2018</b> , 24, 133-145.e5                        | 23.4   | 435 |
| 168 | Strain-Level Analysis of Mother-to-Child Bacterial Transmission during the First Few Months of Life. <i>Cell Host and Microbe</i> , <b>2018</b> , 24, 146-154.e4                                  | 23.4   | 189 |
| 167 | Host genetic variation and its microbiome interactions within the Human Microbiome Project. <i>Genome Medicine</i> , <b>2018</b> , 10, 6                                                          | 14.4   | 86  |
| 166 | Bone Marrow Is a Major Parasite Reservoir in Plasmodium vivax Infection. MBio, 2018, 9,                                                                                                           | 7.8    | 93  |
| 165 | Bifidobacterium Genus in Colorectal Carcinoma Tissue in relation to Tumor Characteristics and Patient Survival. <i>FASEB Journal</i> , <b>2018</b> , 32, 407.3                                    | 0.9    |     |
| 164 | Antimicrobial Chemicals Associate with Microbial Function and Antibiotic Resistance Indoors. <i>MSystems</i> , <b>2018</b> , 3,                                                                   | 7.6    | 46  |
| 163 | Continuity of transcriptomes among colorectal cancer subtypes based on meta-analysis. <i>Genome Biology</i> , <b>2018</b> , 19, 142                                                               | 18.3   | 12  |
| 162 | The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. <i>American Journal of Pathology</i> , <b>2018</b> , 188, 2839-2852 | 5.8    | 31  |
| 161 | Compositional and Temporal Changes in the Gut Microbiome of Pediatric Ulcerative Colitis Patients Are Linked to Disease Course. <i>Cell Host and Microbe</i> , <b>2018</b> , 24, 600-610.e4       | 23.4   | 93  |
| 160 | Temporal development of the gut microbiome in early childhood from the TEDDY study. <i>Nature</i> , <b>2018</b> , 562, 583-588                                                                    | 50.4   | 619 |
| 159 | The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. <i>Nature</i> , <b>2018</b> , 562, 589-594                                                                          | 50.4   | 323 |

#### (2017-2018)

| 158 | Daylight exposure modulates bacterial communities associated with household dust. <i>Microbiome</i> , <b>2018</b> , 6, 175                                                                        | 16.6 | 40  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 157 | Species-level functional profiling of metagenomes and metatranscriptomes. <i>Nature Methods</i> , <b>2018</b> , 15, 962-968                                                                       | 21.6 | 608 |
| 156 | Multiomics Analyses to Deliver the Most Effective Treatment to Every Patient With Inflammatory Bowel Disease. <i>Gastroenterology</i> , <b>2018</b> , 155, e1-e4                                  | 13.3 | 18  |
| 155 | in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status. <i>Cancer Immunology Research</i> , <b>2018</b> , 6, 1327-1336                         | 12.5 | 78  |
| 154 | American Gut: an Open Platform for Citizen Science Microbiome Research. MSystems, 2018, 3,                                                                                                        | 7.6  | 336 |
| 153 | gametocytes display homing and vascular transmigration in the host bone marrow. <i>Science Advances</i> , <b>2018</b> , 4, eaat3775                                                               | 14.3 | 41  |
| 152 | Lactobacillus-Deficient Cervicovaginal Bacterial Communities Are Associated with Increased HIV Acquisition in Young South African Women. <i>Immunity</i> , <b>2017</b> , 46, 29-37                | 32.3 | 320 |
| 151 | Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study. <i>Lancet, The</i> , <b>2017</b> , 389, 1710-1718               | 40   | 315 |
| 150 | Microbial strain-level population structure and genetic diversity from metagenomes. <i>Genome Research</i> , <b>2017</b> , 27, 626-638                                                            | 9.7  | 337 |
| 149 | A prominent glycyl radical enzyme in human gut microbiomes metabolizes -4-hydroxy-l-proline. <i>Science</i> , <b>2017</b> , 355,                                                                  | 33.3 | 85  |
| 148 | ASPirin Intervention for the REDuction of colorectal cancer risk (ASPIRED): a study protocol for a randomized controlled trial. <i>Trials</i> , <b>2017</b> , 18, 50                              | 2.8  | 30  |
| 147 | QseC inhibition as an antivirulence approach for colitis-associated bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2017</b> , 114, 142-147 | 11.5 | 36  |
| 146 | Accessible, curated metagenomic data through ExperimentHub. <i>Nature Methods</i> , <b>2017</b> , 14, 1023-1024                                                                                   | 21.6 | 136 |
| 145 | Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. <i>Nature Biotechnology</i> , <b>2017</b> , 35, 1077-1086         | 44.5 | 240 |
| 144 | Experimental design and quantitative analysis of microbial community multiomics. <i>Genome Biology</i> , <b>2017</b> , 18, 228                                                                    | 18.3 | 87  |
| 143 | A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. <i>Genome Medicine</i> , <b>2017</b> , 9, 103                                                                  | 14.4 | 254 |
| 142 | Schrdingers microbes: Tools for distinguishing the living from the dead in microbial ecosystems. <i>Microbiome</i> , <b>2017</b> , 5, 86                                                          | 16.6 | 214 |
| 141 | Strains, functions and dynamics in the expanded Human Microbiome Project. <i>Nature</i> , <b>2017</b> , 550, 61-66                                                                                | 50.4 | 595 |

| 140 | Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. <i>Science</i> , <b>2017</b> , 357, 1156-1160                                   | 33.3            | 577                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 139 | Fluoride Depletes Acidogenic Taxa in Oral but Not Gut Microbial Communities in Mice. <i>MSystems</i> , <b>2017</b> , 2,                                                                       | 7.6             | 11                 |
| 138 | Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation. <i>Cell Host and Microbe</i> , <b>2017</b> , 22, 25-37.e6                                        | 23.4            | 287                |
| 137 | Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer. <i>Scientific Reports</i> , <b>2017</b> , 7, 17686                              | 4.9             | 63                 |
| 136 | Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue. <i>JAMA Oncology</i> , <b>2017</b> , 3, 921-927                | 13.4            | 177                |
| 135 | A Bayesian method for detecting pairwise associations in compositional data. <i>PLoS Computational Biology</i> , <b>2017</b> , 13, e1005852                                                   | 5               | 21                 |
| 134 | Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. <i>Gut</i> , <b>2016</b> , 65, 1973-198                                                                         | B <b>Q</b> 19.2 | 454                |
| 133 | Uncovering oral Neisseria tropism and persistence using metagenomic sequencing. <i>Nature Microbiology</i> , <b>2016</b> , 1, 16070                                                           | 26.6            | 46                 |
| 132 | Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. <i>Science Translational Medicine</i> , <b>2016</b> , 8, 343ra81 | 17.5            | 514                |
| 131 | Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. <i>Clinical and Translational Gastroenterology</i> , <b>2016</b> , 7, e200                                | 4.2             | 156                |
| 130 | Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. <i>Nature Communications</i> , <b>2016</b> , 7, 12727             | 17.4            | 130                |
| 129 | Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. <i>Cell</i> , <b>2016</b> , 167, 112                                                                           | 5516.1236       | 5. <del>4</del> §7 |
| 128 | Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. <i>Genome Medicine</i> , <b>2016</b> , 8, 17                                                               | 14.4            | 127                |
| 127 | Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. <i>Nature Communications</i> , <b>2016</b> , 7, 10391                              | 17.4            | 524                |
| 126 | Fecal Microbiome in Epidemiologic Studies-Letter. <i>Cancer Epidemiology Biomarkers and Prevention</i> , <b>2016</b> , 25, 869                                                                | 4               | 3                  |
| 125 | Computational Reconstruction of NFB Pathway Interaction Mechanisms during Prostate Cancer. <i>PLoS Computational Biology</i> , <b>2016</b> , 12, e1004820                                     | 5               | 17                 |
| 124 | Paneth cell defects in Crohn's disease patients promote dysbiosis. JCI Insight, 2016, 1, e86907                                                                                               | 9.9             | 54                 |
| 123 | A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. <i>ELife</i> , <b>2016</b> , 5,                                                            | 8.9             | 64                 |

### (2015-2016)

| 122 | PWE-102 Elucidating The Role of Non JEJUNI/Coli-Campylobacter in The Development of Colorectal Cancer Utilising Comparative Genomics to Study Their Pathogenic Potential. <i>Gut</i> , <b>2016</b> , 65, A188.2-A189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.2 |      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| 121 | Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment. <i>MSystems</i> , <b>2016</b> , 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.6  | 73   |
| 120 | The Chthonomonas calidirosea Genome Is Highly Conserved across Geographic Locations and Distinct Chemical and Microbial Environments in New Zealand's Taup Volcanic Zone. <i>Applied and Environmental Microbiology</i> , <b>2016</b> , 82, 3572-81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.8  | 5    |
| 119 | Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. <i>Cell</i> , <b>2016</b> , 165, 842-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56.2 | 584  |
| 118 | Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. <i>Science</i> , <b>2016</b> , 352, 565-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33.3 | 929  |
| 117 | The healthy human microbiome. <i>Genome Medicine</i> , <b>2016</b> , 8, 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.4 | 789  |
| 116 | Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome. <i>Environmental Science &amp; Environmental Science &amp; Environmental</i> | 10.3 | 93   |
| 115 | CellMapper: rapid and accurate inference of gene expression in difficult-to-isolate cell types. <i>Genome Biology</i> , <b>2016</b> , 17, 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.3 | 13   |
| 114 | Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. <i>Genome Medicine</i> , <b>2015</b> , 7, 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.4 | 63   |
| 113 | Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. <i>Cell Host and Microbe</i> , <b>2015</b> , 17, 385-391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.4 | 185  |
| 112 | Sequencing and beyond: integrating molecular SomicsSfor microbial community profiling. <i>Nature Reviews Microbiology</i> , <b>2015</b> , 13, 360-72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.2 | 394  |
| 111 | Identifying personal microbiomes using metagenomic codes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2015</b> , 112, E2930-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.5 | 270  |
| 110 | Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease. <i>Genome Biology</i> , <b>2015</b> , 16, 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.3 | 119  |
| 109 | MetaPhlAn2 for enhanced metagenomic taxonomic profiling. <i>Nature Methods</i> , <b>2015</b> , 12, 902-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.6 | 1107 |
| 108 | Complete genome sequence of the thermophilic Acidobacteria, Pyrinomonas methylaliphatogenes type strain K22(T). <i>Standards in Genomic Sciences</i> , <b>2015</b> , 10, 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 13   |
| 107 | Cross-biome comparison of microbial association networks. <i>Frontiers in Microbiology</i> , <b>2015</b> , 6, 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.7  | 102  |
| 106 | Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. <i>Immunity</i> , <b>2015</b> , 42, 965-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.3 | 343  |
| 105 | Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. <i>JAMA Oncology</i> , <b>2015</b> , 1, 653-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.4 | 336  |

| 104                  | The microbiome quality control project: baseline study design and future directions. <i>Genome Biology</i> , <b>2015</b> , 16, 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.3                           | 140                           |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| 103                  | The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. <i>Cell Host and Microbe</i> , <b>2015</b> , 17, 260-73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23.4                           | 639                           |
| 102                  | Genomic Sequencing and Other Tools for Studying Microbial Communities. <i>Microbe Magazine</i> , <b>2015</b> , 10, 419-425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | 3                             |
| 101                  | High-Specificity Targeted Functional Profiling in Microbial Communities with ShortBRED. <i>PLoS Computational Biology</i> , <b>2015</b> , 11, e1004557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                              | 146                           |
| 100                  | Compact graphical representation of phylogenetic data and metadata with GraPhlAn. <i>PeerJ</i> , <b>2015</b> , 3, e1029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.1                            | 415                           |
| 99                   | A reproducible approach to high-throughput biological data acquisition and integration. <i>PeerJ</i> , <b>2015</b> , 3, e791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.1                            | 11                            |
| 98                   | Gene-targeted metagenomic analysis of glucan-branching enzyme gene profiles among human and animal fecal microbiota. <i>ISME Journal</i> , <b>2014</b> , 8, 493-503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.9                           | 23                            |
| 97                   | Functional and phylogenetic assembly of microbial communities in the human microbiome. <i>Trends in Microbiology</i> , <b>2014</b> , 22, 261-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.4                           | 129                           |
| 96                   | MetaSomic analytic techniques for studying the intestinal microbiome. <i>Gastroenterology</i> , <b>2014</b> , 146, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 137 <u>:</u> 3. <del>3</del> 4 | 8. <b>e</b> 16                |
| 95                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                               |
|                      | The treatment-naive microbiome in new-onset Crohns disease. <i>Cell Host and Microbe</i> , <b>2014</b> , 15, 382-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9223.4                         | 1836                          |
| 94                   | Relating the metatranscriptome and metagenome of the human gut. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2014</b> , 111, E2329-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9223.4                         | 1836<br>410                   |
|                      | Relating the metatranscriptome and metagenome of the human gut. <i>Proceedings of the National</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>.</i>                       |                               |
| 94                   | Relating the metatranscriptome and metagenome of the human gut. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2014</b> , 111, E2329-38  Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. <i>Journal of</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5                           | 410                           |
| 94                   | Relating the metatranscriptome and metagenome of the human gut. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2014</b> , 111, E2329-38  Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. <i>Journal of the National Cancer Institute</i> , <b>2014</b> , 106,  Determining microbial products and identifying molecular targets in the human microbiome. <i>Cell</i>                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.5<br>9.7                    | 410                           |
| 94<br>93<br>92       | Relating the metatranscriptome and metagenome of the human gut. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2014</b> , 111, E2329-38  Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. <i>Journal of the National Cancer Institute</i> , <b>2014</b> , 106,  Determining microbial products and identifying molecular targets in the human microbiome. <i>Cell Metabolism</i> , <b>2014</b> , 20, 731-741  Gut microbiome composition and function in experimental colitis during active disease and                                                                                                                                                                                                                                                                                                        | 9·7<br>24.6                    | 410<br>77<br>68               |
| 94<br>93<br>92<br>91 | Relating the metatranscriptome and metagenome of the human gut. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2014</b> , 111, E2329-38  Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. <i>Journal of the National Cancer Institute</i> , <b>2014</b> , 106,  Determining microbial products and identifying molecular targets in the human microbiome. <i>Cell Metabolism</i> , <b>2014</b> , 20, 731-741  Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. <i>ISME Journal</i> , <b>2014</b> , 8, 1403-17                                                                                                                                                                                                                            | 11.5<br>9.7<br>24.6<br>11.9    | 410<br>77<br>68<br>275<br>237 |
| 94<br>93<br>92<br>91 | Relating the metatranscriptome and metagenome of the human gut. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2014</b> , 111, E2329-38  Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. <i>Journal of the National Cancer Institute</i> , <b>2014</b> , 106,  Determining microbial products and identifying molecular targets in the human microbiome. <i>Cell Metabolism</i> , <b>2014</b> , 20, 731-741  Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. <i>ISME Journal</i> , <b>2014</b> , 8, 1403-17  Inflammatory bowel disease as a model for translating the microbiome. <i>Immunity</i> , <b>2014</b> , 40, 843-54  Human microbiome science: vision for the future, Bethesda, MD, July 24 to 26, 2013. <i>Microbiome</i> , | 11.5<br>9.7<br>24.6<br>11.9    | 410<br>77<br>68<br>275<br>237 |

### (2013-2014)

| 86 | Complex host genetics influence the microbiome in inflammatory bowel disease. <i>Genome Medicine</i> , <b>2014</b> , 6, 107                                                  | 14.4   | 253  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| 85 | Reprograming of gut microbiome energy metabolism by the FUT2 CrohnS disease risk polymorphism. <i>ISME Journal</i> , <b>2014</b> , 8, 2193-206                               | 11.9   | 140  |
| 84 | Cross-study validation for the assessment of prediction algorithms. <i>Bioinformatics</i> , <b>2014</b> , 30, i105-12                                                        | 7.2    | 44   |
| 83 | ME-o-menos: a simple sign averaging method for discrimination in genomic data analysis. <i>Bioinformatics</i> , <b>2014</b> , 30, 3062-9                                     | 7.2    | 29   |
| 82 | Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses. <i>Journal of Innate Immunity</i> , <b>2014</b> , 6, 253-62            | 6.9    | 67   |
| 81 | Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. <i>Journal of the National Cancer Institute</i> , <b>2014</b> , 106,                 | 9.7    | 123  |
| 80 | Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature.<br>Journal of Clinical Investigation, <b>2014</b> , 124, 3617-33             | 15.9   | 320  |
| 79 | Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. <i>Nature Biotechnology</i> , <b>2013</b> , 31, 814-21                        | 44.5   | 5270 |
| 78 | PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. <i>Nature Communications</i> , <b>2013</b> , 4, 2304                               | 17.4   | 511  |
| 77 | Functional profiling of the gut microbiome in disease-associated inflammation. <i>Genome Medicine</i> , <b>2013</b> , 5, 65                                                  | 14.4   | 39   |
| 76 | Two-stage microbial community experimental design. ISME Journal, 2013, 7, 2330-9                                                                                             | 11.9   | 16   |
| 75 | Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. <i>Microbiome</i> , <b>2013</b> , 1, 17 | 16.6   | 175  |
| 74 | Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants. <i>Microbiome</i> , <b>2013</b> , 1, 13                      | 16.6   | 213  |
| 73 | Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. <i>Cell</i> , <b>2013</b> , 155, 1296-                                                       | -39882 | 222  |
| 72 | Sixty years of genome biology. <i>Genome Biology</i> , <b>2013</b> , 14, 113                                                                                                 | 18.3   | 4    |
| 71 | Biodiversity and functional genomics in the human microbiome. <i>Trends in Genetics</i> , <b>2013</b> , 29, 51-8                                                             | 8.5    | 167  |
| 7º | Translating the human microbiome. <i>Nature Biotechnology</i> , <b>2013</b> , 31, 304-8                                                                                      | 44.5   | 25   |
| 69 | Computational metaSomics for microbial community studies. <i>Molecular Systems Biology</i> , <b>2013</b> , 9, 666                                                            | 12.2   | 216  |

| 68 | A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. <i>PLoS Computational Biology</i> , <b>2013</b> , 9, e1002863           | 5                  | 359  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|
| 67 | Simultaneous quantification of multiple bacteria by the BactoChip microarray designed to target species-specific marker genes. <i>PLoS ONE</i> , <b>2013</b> , 8, e55764                            | 3.7                | 14   |
| 66 | Inferring developmental stage composition from gene expression in human malaria. <i>PLoS Computational Biology</i> , <b>2013</b> , 9, e1003392                                                      | 5                  | 40   |
| 65 | curatedOvarianData: clinically annotated data for the ovarian cancer transcriptome. <i>Database: the Journal of Biological Databases and Curation</i> , <b>2013</b> , 2013, bat013                  | 5                  | 123  |
| 64 | Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. <i>ELife</i> , <b>2013</b> , 2, e01202                                                               | 8.9                | 1092 |
| 63 | Passing messages between biological networks to refine predicted interactions. <i>PLoS ONE</i> , <b>2013</b> , 8, e6                                                                                | 483 <del>7</del> 2 | 108  |
| 62 | Author response: Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis <b>2013</b> ,                                                                        |                    | 8    |
| 61 | Early intestinal colonization phenotypes predict necrotizing enterocolitis in preterm infants. <i>FASEB Journal</i> , <b>2013</b> , 27, 357.1                                                       | 0.9                |      |
| 60 | Expression profiling of archival tumors for long-term health studies. <i>Clinical Cancer Research</i> , <b>2012</b> , 18, 6136-46                                                                   | 12.9               | 25   |
| 59 | Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. <i>Genome Biology</i> , <b>2012</b> , 13, R42                       | 18.3               | 572  |
| 58 | Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. <i>Genome Biology</i> , <b>2012</b> , 13, R79                                                                 | 18.3               | 1668 |
| 57 | Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. <i>Gut</i> , <b>2012</b> , 61, 847-54 | 19.2               | 429  |
| 56 | The Human Microbiome Project: a community resource for the healthy human microbiome. <i>PLoS Biology</i> , <b>2012</b> , 10, e1001377                                                               | 9.7                | 268  |
| 55 | Metagenomic microbial community profiling using unique clade-specific marker genes. <i>Nature Methods</i> , <b>2012</b> , 9, 811-4                                                                  | 21.6               | 1120 |
| 54 | Colorectal cancer: a tale of two sides or a continuum?. <i>Gut</i> , <b>2012</b> , 61, 794-7                                                                                                        | 19.2               | 192  |
| 53 | Metabolic reconstruction for metagenomic data and its application to the human microbiome. <i>PLoS Computational Biology</i> , <b>2012</b> , 8, e1002358                                            | 5                  | 730  |
| 52 | Microbial co-occurrence relationships in the human microbiome. <i>PLoS Computational Biology</i> , <b>2012</b> , 8, e1002606                                                                        | 5                  | 914  |
| 51 | Chapter 12: Human microbiome analysis. <i>PLoS Computational Biology</i> , <b>2012</b> , 8, e1002808                                                                                                | 5                  | 310  |

| 50 | Bioinformatics for the Human Microbiome Project. PLoS Computational Biology, 2012, 8, e1002779                                                                                                      | 5    | 54   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| 49 | Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. <i>PLoS Pathogens</i> , <b>2012</b> , 8, e1002946                                                           | 7.6  | 181  |
| 48 | Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. <i>Genome Research</i> , <b>2012</b> , 22, 292-8                                                                | 9.7  | 1165 |
| 47 | A case study for large-scale human microbiome analysis using JCVIS metagenomics reports (METAREP). <i>PLoS ONE</i> , <b>2012</b> , 7, e29044                                                        | 3.7  | 10   |
| 46 | A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. <i>PLoS ONE</i> , <b>2012</b> , 7, e36466                                                              | 3.7  | 426  |
| 45 | Integrative approaches for microarray data analysis. <i>Methods in Molecular Biology</i> , <b>2012</b> , 802, 157-82                                                                                | 1.4  | 4    |
| 44 | Metagenomic biomarker discovery and explanation. <i>Genome Biology</i> , <b>2011</b> , 12, R60                                                                                                      | 18.3 | 6301 |
| 43 | Microbial community function and biomarker discovery in the human microbiome <b>2011</b> , 12, P47                                                                                                  |      | 21   |
| 42 | The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. <i>Cell Host and Microbe</i> , <b>2011</b> , 10, 260-72 | 23.4 | 142  |
| 41 | Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies. <i>PLoS ONE</i> , <b>2011</b> , 6, e24704                                               | 3.7  | 67   |
| 40 | Host and gut microbiota symbiotic factors: lessons from inflammatory bowel disease and successful symbionts. <i>Cellular Microbiology</i> , <b>2011</b> , 13, 508-17                                | 3.9  | 18   |
| 39 | Current concepts of the intestinal microbiota and the pathogenesis of infection. <i>Current Infectious Disease Reports</i> , <b>2011</b> , 13, 28-34                                                | 3.9  | 79   |
| 38 | Genomics in 2011: challenges and opportunities. <i>Genome Biology</i> , <b>2011</b> , 12, 137                                                                                                       | 18.3 |      |
| 37 | Computational biology: plus csest la mine chose, plus il change. <i>Genome Biology</i> , <b>2011</b> , 12, 307                                                                                      | 18.3 |      |
| 36 | Optimized application of penalized regression methods to diverse genomic data. <i>Bioinformatics</i> , <b>2011</b> , 27, 3399-406                                                                   | 7.2  | 56   |
| 35 | STAT3 expression, molecular features, inflammation patterns, and prognosis in a database of 724 colorectal cancers. <i>Clinical Cancer Research</i> , <b>2011</b> , 17, 1452-62                     | 12.9 | 138  |
| 34 | A quick guide to large-scale genomic data mining. <i>PLoS Computational Biology</i> , <b>2010</b> , 6, e1000779                                                                                     | 5    | 23   |
| 33 | Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components. <i>PLoS Computational Biology</i> , <b>2010</b> , 6, e1001009                               | 5    | 17   |

| 32 | Integrated functional networks of process, tissue, and developmental stage specific interactions in Arabidopsis thaliana. <i>BMC Systems Biology</i> , <b>2010</b> , 4, 180                                                                               | 3.5  | 20  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 31 | Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. <i>Molecular Cancer</i> , <b>2010</b> , 9, 125                                                                                                     | 42.1 | 119 |
| 30 | The impact of incomplete knowledge on evaluation: an experimental benchmark for protein function prediction. <i>Bioinformatics</i> , <b>2009</b> , 25, 2404-10                                                                                            | 7.2  | 29  |
| 29 | Detailing regulatory networks through large scale data integration. <i>Bioinformatics</i> , <b>2009</b> , 25, 3267-74                                                                                                                                     | 7.2  | 64  |
| 28 | Predicting cellular growth from gene expression signatures. PLoS Computational Biology, 2009, 5, e100                                                                                                                                                     | 0357 | 78  |
| 27 | Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis. <i>PLoS Genetics</i> , <b>2009</b> , 5, e1000407                                                                                                   | 6    | 113 |
| 26 | Directing experimental biology: a case study in mitochondrial biogenesis. <i>PLoS Computational Biology</i> , <b>2009</b> , 5, e1000322                                                                                                                   | 5    | 31  |
| 25 | Exploring the human genome with functional maps. <i>Genome Research</i> , <b>2009</b> , 19, 1093-106                                                                                                                                                      | 9.7  | 159 |
| 24 | Graphle: Interactive exploration of large, dense graphs. BMC Bioinformatics, 2009, 10, 417                                                                                                                                                                | 3.6  | 14  |
| 23 | Global prediction of tissue-specific gene expression and context-dependent gene networks in Caenorhabditis elegans. <i>PLoS Computational Biology</i> , <b>2009</b> , 5, e1000417                                                                         | 5    | 71  |
| 22 | Computational analysis of the yeast proteome: understanding and exploiting functional specificity in genomic data. <i>Methods in Molecular Biology</i> , <b>2009</b> , 548, 273-93                                                                        | 1.4  | 1   |
| 21 | Assessing the functional structure of genomic data. <i>Bioinformatics</i> , <b>2008</b> , 24, i330-8                                                                                                                                                      | 7.2  | 10  |
| 20 | Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. <i>Molecular Biology of the Cell</i> , <b>2008</b> , 19, 352-67                                                                                                | 3.5  | 405 |
| 19 | The Sleipnir library for computational functional genomics. <i>Bioinformatics</i> , <b>2008</b> , 24, 1559-61                                                                                                                                             | 7.2  | 59  |
| 18 | Nearest Neighbor Networks: clustering expression data based on gene neighborhoods. <i>BMC Bioinformatics</i> , <b>2007</b> , 8, 250                                                                                                                       | 3.6  | 44  |
| 17 | Exploring the functional landscape of gene expression: directed search of large microarray compendia. <i>Bioinformatics</i> , <b>2007</b> , 23, 2692-9                                                                                                    | 7.2  | 202 |
| 16 | Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2007</b> , 104, 2193-8 | 11.5 | 509 |
| 15 | A scalable method for integration and functional analysis of multiple microarray datasets. <i>Bioinformatics</i> , <b>2006</b> , 22, 2890-7                                                                                                               | 7.2  | 101 |

#### LIST OF PUBLICATIONS

| 14 | BAYESIAN DATA INTEGRATION: A FUNCTIONAL PERSPECTIVE <b>2006</b> ,                                                                                                                               | 9   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 13 | Bayesian data integration: a functional perspective. <i>Computational Systems Bioinformatics / Life Sciences Society Computational Systems Bioinformatics Conference</i> , <b>2006</b> , 341-51 | 6   |
| 12 | QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science                                                                                                            | 36  |
| 11 | Accessible, curated metagenomic data through ExperimentHub                                                                                                                                      | 3   |
| 10 | Gut microbes and their genes are associated with brain development and cognitive function in healthy children                                                                                   | 1   |
| 9  | Population Structure Discovery in Meta-Analyzed Microbial Communities and Inflammatory Bowel Disease                                                                                            | 3   |
| 8  | Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3                                                                                 | 22  |
| 7  | HMP16SData: Efficient Access to the Human Microbiome Project through Bioconductor                                                                                                               | 1   |
| 6  | The Prevotella copri complex comprises four distinct clades that are underrepresented in Westernised populations                                                                                | 6   |
| 5  | PICRUSt2: An improved and customizable approach for metagenome inference                                                                                                                        | 228 |
| 4  | Density-based binning of gene clusters to infer function or evolutionary history using GeneGrouper                                                                                              | 1   |
| 3  | Human gut bacteria produce TH17-modulating bile acid metabolites                                                                                                                                | 3   |
| 2  | A Bacterial Bile Acid Metabolite Modulates Treg Activity through the Nuclear Hormone Receptor NR4A1                                                                                             | 1   |
| 1  | Multivariable Association Discovery in Population-scale Meta-omics Studies                                                                                                                      | 71  |