
Marc M Sosson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2926245/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Jurassic back-arc and Cretaceous hot-spot series In the Armenian ophiolites $\hat{a} \in$ " Implications for the obduction process. Lithos, 2009, 112, 163-187.	1.4	143
2	Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. Geological Society Special Publication, 2010, 340, 329-352.	1.3	128
3	Back arc extension, tectonic inheritance, and volcanism in the Ligurian Sea, Western Mediterranean. Tectonics, 2002, 21, 6-1-6-23.	2.8	124
4	Evidence for â^¼80–75Ma subduction jump during Anatolide–Tauride–Armenian block accretion and â^¼4 Arabia–Eurasia collision in Lesser Caucasus–East Anatolia. Journal of Geodynamics, 2012, 56-57, 76-85.	18Ma 1.6	118
5	From oblique subduction to intra-continental transpression: Structures of the southern Kermadec-Hikurangi margin from multibeam bathymetry, side-scan sonar and seismic reflection. Marine Geophysical Researches, 1996, 18, 357-381.	1.2	116
6	Blueschists of the Amassia-Stepanavan Suture Zone (Armenia): linking Tethys subduction history from E-Turkey to W-Iran. International Journal of Earth Sciences, 2009, 98, 533-550.	1.8	109
7	Geology, geochemistry and 40Ar/39Ar dating of Sevan ophiolites (Lesser Caucasus, Armenia): Evidence for Jurassic Back-arc opening and hot spot event between the South Armenian Block and Eurasia. Journal of Asian Earth Sciences, 2009, 34, 135-153.	2.3	104
8	Oceanic-ridge subduction vs. slab break off: Plate tectonic evolution along the Baja California Sur continental margin since 15 Ma. Geology, 2006, 34, 13.	4.4	84
9	Prolonged Variscan to Alpine history of an active Eurasian margin (Georgia, Armenia) revealed by 40Ar/39Ar dating. Gondwana Research, 2011, 20, 798-815.	6.0	83
10	The Oligocene-Miocene Pacific-Australia plate boundary, south of New Zealand: Evolution from oceanic spreading to strike-slip faulting. Earth and Planetary Science Letters, 1997, 148, 129-139.	4.4	78
11	Development of the Gulf of Guayaquil (Ecuador) during the Quaternary as an effect of the North Andean block tectonic escape. Tectonics, 2006, 25, n/a-n/a.	2.8	74
12	Cenozoic-Recent tectonics and uplift in the Greater Caucasus: a perspective from Azerbaijan. Geological Society Special Publication, 2010, 340, 261-280.	1.3	74
13	The eastern Black Sea-Caucasus region during the Cretaceous: New evidence to constrain its tectonic evolution. Comptes Rendus - Geoscience, 2016, 348, 23-32.	1.2	67
14	Linking the NE Anatolian and Lesser Caucasus ophiolites: evidence for large-scale obduction of oceanic crust and implications for the formation of the Lesser Caucasus-Pontides Arc. Geodinamica Acta, 2013, 26, 311-330.	2.2	64
15	The denudation history of the Argentera Alpine External Crystalline Massif (Western Alps,) Tj ETQq1 1 0.784314 r Acta, 2006, 19, 455-473.	gBT /Ove 2.2	rlock 10 Tf 5 57
16	Evidence for superposed MORB, oceanic plateau and volcanic arc series in the Lesser Caucasus (Stepanavan, Armenia). Comptes Rendus - Geoscience, 2007, 339, 482-492.	1.2	57
17	Late exhumation stages of the Alpujarride Complex (western Betic Cordilleras, Spain): new thermochronological and structural data on Los Reales and Ojen nappes. Tectonophysics, 1998, 285, 253-273.	2.2	55
18	The Armenian Ophiolite: insights for Jurassic back-arc formation, Lower Cretaceous hot spot magmatism and Upper Cretaceous obduction over the South Armenian Block. Geological Society Special Publication, 2010, 340, 353-382.	1.3	54

#	Article	IF	CITATIONS
19	New structural and petrological data on the Amasia ophiolites (NW Sevan–Akera suture zone, Lesser) Tj ETQq1 135-153.	1 0.7843 2.2	14 rgBT /O 54
20	Morphostructure of an incipient subduction zone along a transform plate boundary: Puysegur Ridge and Trench. Geology, 1995, 23, 519.	4.4	52
21	Neogene to Quaternary stress field evolution in Lesser Caucasus and adjacent regions using fault kinematics analysis and volcanic cluster data. Geodinamica Acta, 2005, 18, 401-416.	2.2	48
22	Crustal strain in the Southern Alps, France, 1948–1998. Tectonophysics, 2000, 319, 1-17.	2.2	47
23	From strike-slip faulting to oblique subduction: A survey of the Alpine Fault-Puysegur Trench transition, New Zealand, results of cruise Geodynz-sud leg 2. Marine Geophysical Researches, 1996, 18, 383-399.	1.2	45
24	Cenozoic denudation of Corsica in response to Ligurian and Tyrrhenian extension: Results from apatite fission track thermochronology. Tectonics, 2004, 23, n/a-n/a.	2.8	44
25	Pliocene deformation of the north-Ligurian margin (France) : consequences of a south-Alpine crustal thrust. Bulletin - Societie Geologique De France, 2004, 175, 197-211.	2.2	43
26	Recent tectonic stress evolution in the Lesser Caucasus and adjacent regions. Geological Society Special Publication, 2010, 340, 393-408.	1.3	43
27	Mass-transport deposits in the northern Ecuador subduction trench: Result of frontal erosion over multiple seismic cycles. Earth and Planetary Science Letters, 2010, 296, 89-102.	4.4	39
28	Seismic model of the crust and upper mantle in the Scythian Platform: the DOBRE-5 profile across the north western Black Sea and the Crimean Peninsula. Geophysical Journal International, 2015, 201, 406-428.	2.4	39
29	A review of the plate convergence history of the East Anatolia-Transcaucasus region during the Variscan: Insights from the Georgian basement and its connection to the Eastern Pontides. Journal of Geodynamics, 2016, 96, 131-145.	1.6	39
30	The East Anatolia–Lesser Caucasus ophiolite: An exceptional case of large-scale obduction, synthesis of data and numerical modelling. Geoscience Frontiers, 2020, 11, 83-108.	8.4	39
31	Offshore Oligo-Miocene volcanic fields within the Corsica-Liguria Basin: Magmatic diversity and slab evolution in the western Mediterranean Sea. Journal of Geodynamics, 2012, 58, 73-95.	1.6	37
32	Transition from the Farallon Plate subduction to the collision between South and Central America: Geological evolution of the Panama Isthmus. Tectonophysics, 2014, 622, 145-167.	2.2	37
33	A paleolatitude reconstruction of the South Armenian Block (Lesser Caucasus) for the Late Cretaceous: Constraints on the Tethyan realm. Tectonophysics, 2015, 644-645, 197-219.	2.2	35
34	Motion partitioning between the Pacific plate, Baja California and the North America plate: The Tosco-Abreojos fault revisited. Geophysical Research Letters, 2004, 31, .	4.0	34
35	Multi-stage metamorphism in the South Armenian Block during the Late Jurassic to Early Cretaceous: Tectonics over south-dipping subduction of Northern branch of Neotethys. Journal of Asian Earth Sciences, 2015, 102, 4-23.	2.3	34
36	Seabeam and seismic reflection imaging of the tectonic regime of the Andean continental margin off Peru (4°S to 10°S). Earth and Planetary Science Letters, 1988, 87, 111-126.	4.4	31

#	Article	IF	CITATIONS
37	Subsidence and strike-slip tectonism of the upper continental slope off Manzanillo, Mexico. Tectonophysics, 2005, 398, 115-140.	2.2	31
38	Diachronous cooling on both sides of a major strike slip fault in the Variscan Maures Massif (south-east France), as deduced from a detailed 40Ar/39Ar study. Tectonophysics, 2000, 321, 103-126.	2.2	30
39	Late Quaternary geomorphologic evolution of submarine canyons as a marker of active deformation on convergent margins: The example of the South Colombian margin. Marine Geology, 2012, 315-318, 77-97.	2.1	30
40	Obduction of old oceanic lithosphere due to reheating and plate reorganization: Insights from numerical modelling and the NE Anatolia – Lesser Caucasus case example. Journal of Geodynamics, 2016, 96, 35-49.	1.6	28
41	Reconstructing Upper Cretaceous (Cenomanian) paleoenvironments in Armenia based on Radiolaria and benthic Foraminifera; implications for the geodynamic evolution of the Tethyan realm in the Lesser Caucasus. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 413, 123-132.	2.3	27
42	An offshore-onland transect across the north-eastern Black Sea basin (Crimean margin): Evidence of Paleocene to Pliocene two-stage compression. Tectonophysics, 2016, 688, 84-100.	2.2	27
43	Obduction triggered by regional heating during plate reorganization. Terra Nova, 2016, 28, 76-82.	2.1	27
44	Discovery of Middle Jurassic (Bajocian) Radiolaria from the sedimentary cover of the Vedi ophiolite (Lesser Caucasus, Armenia). Comptes Rendus - Palevol, 2008, 7, 327-334.	0.2	26
45	Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform: introduction. Geological Society Special Publication, 2010, 340, 1-10.	1.3	25
46	SeaBeam and deep-sea submersible Nautile surveys in the Chiclayo canyon off Peru (7°S): Subsidence and subduction-erosion of an Andean-type convergent margin since Pliocene times. Marine Geology, 1994, 118, 237-256.	2.1	24
47	Extension versus shortening models for hinterland-directed motions in the southern Québec Appalachians. Tectonophysics, 1996, 267, 239-256.	2.2	24
48	From seafloor spreading to obduction: Jurassic–Cretaceous evolution of the northern branch of the Neotethys in the Northeastern Anatolian and Lesser Caucasus regions. Geological Society Special Publication, 2017, 428, 41-60.	1.3	23
49	Seafloor margin map helps in understanding subduction earthquakes. Eos, 2005, 86, 463.	0.1	22
50	Ordovician and Silurian metamorphic cooling ages along the Laurentian margin of the Quebec Appalachians: Bridging the gap between New England and Newfoundland. Geology, 1997, 25, 583.	4.4	21
51	Geological history of ophiolites in the Lesser Caucasus and correlation with the Izmir-Ankara-Erzincan suture zone: insights from radiolarian biochronology. Bulletin - Societie Geologique De France, 2012, 183, 331-342.	2.2	21
52	Progressive orocline formation in the Eastern Pontides–Lesser Caucasus. Geological Society Special Publication, 2017, 428, 117-143.	1.3	21
53	New and revised radiolarian biochronology for the sedimentary cover of ophiolites in the Lesser Caucasus (Armenia). Geological Society Special Publication, 2010, 340, 383-391.	1.3	20
54	Key problems of stratigraphy in the Eastern Crimea Peninsula: some insights from new dating and structural data. Geological Society Special Publication, 2017, 428, 265-306.	1.3	20

#	Article	IF	CITATIONS
55	Geochemistry of the Eocene magmatic rocks from the Lesser Caucasus area (Armenia): evidence of a subduction geodynamic environment. Geological Society Special Publication, 2017, 428, 73-98.	1.3	16
56	Tectonic Evolution of the Eastern Black Sea and Caucasus: an introduction. Geological Society Special Publication, 2017, 428, 1-9.	1.3	14
57	The deep structure of Corsica as inferred by a broad band seismological profile. Geophysical Research Letters, 1999, 26, 2661-2664.	4.0	12
58	Radiolarian biostratigraphic constraints for latest Jurassic-earliest Cretaceous submarine volcanic activity in the Tethyan oceanic realm of the Sevan ophiolite (Armenia). Bulletin - Societie Geologique De France, 2012, 183, 319-330.	2.2	11
59	New data on the tectonic evolution of the Khoy region, NW Iran. Geological Society Special Publication, 2017, 428, 99-116.	1.3	11
60	TECTONIC EVOLUTION OF THE NORTHERN MARGIN OF THE CENOZOIC ARARAT BASIN, LESSER CAUCASUS, ARMENIA. Journal of Petroleum Geology, 2018, 41, 495-511.	1.5	11
61	Influence of preexisting backstop structure on oblique tectonic accretion: The Fiordland margin (southwestern New Zealand). Geology, 1996, 24, 1045.	4.4	10
62	Multibeam bathymetry and sidescan imaging of the Rivera Transform–Moctezuma Spreading Segment junction, northern East Pacific Rise: New constraints on Rivera–Pacific relative plate motion. Tectonophysics, 2008, 454, 70-85.	2.2	10
63	Active Deformation along the Southern End of the Tosco-Abreojos Fault System: New Insights from Multibeam Swath Bathymetry. Pure and Applied Geophysics, 2011, 168, 1363-1372.	1.9	10
64	The Mid-Rivera-Transform Discordance: Morphology and Tectonic Development. Pure and Applied Geophysics, 2011, 168, 1391-1413.	1.9	9
65	Importance du volcanisme calco-alcalin miocène sur la marge sud-ouest de la Corse (campagne) Tj ETQq1 1 0.78 Terre Et Des Planètes =, 1998, 327, 369-376.	84314 rgB 0.2	Γ/Overlock 1 6
66	Dénudations cénozoÃ ⁻ ques en CorseÂ: une analyse thermochronologique par traces de fission sur apatites. Comptes Rendus De L'Académie Des Sciences Earth & Planetary Sciences Série II, Sciences De La Terre Et Des PlanÃïtes =, 2000, 331, 775-782.	0.2	5
67	Right-lateral active faulting between southern Baja California and the Pacific plate: The Tosco-Abreojos fault. , 2007, , .		5
68	Lithological nature of the subduction channel: Insights from the Karabakh suture zone (Lesser) Tj ETQq0 0 0 rgB	Г /Qverlock 1.6	10 Tf 50 22
69	Southwestern extension of the Papago Terrane into the Altar Desert region, northwestern Sonora, and its implications. , 1995, , 99-109.		3
70	Biostratigraphy and paleoenvironment of foraminiferal assemblages from neogene and quarternary deep-sea sediments collected during the nautimate cruise (Pacific Ocean, off Mexico, 18°N-21°N). Geodynamic implications. Revue De Micropaleontologie, 1997, 40, 97-111.	0.4	3
71	Palaeo-stress regimes and structural framework during the Mesozoic-Cenozoic tectonic evolution of the Crimean Mountains (the northern margin of the Black Sea). Journal of Asian Earth Sciences, 2021, 211, 104704.	2.3	2
72	Key problems of the eastern part of the Crimea Mountain stratigraphy. New micropaleontologic	0.2	2

ropaleontologic information for dating of flysh rocks. Geofizicheskiy Zhurnal, 2014, 36, 35-56. 72

#	Article	IF	CITATIONS
73	Northern Dobrogea and the Crimean Mountains: The Key Areas in the Tectonic Evolution of the Black Sea Basin. Advances in Science, Technology and Innovation, 2019, , 307-310.	0.4	Ο