Yutaka Noguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2926114/publications.pdf

Version: 2024-02-01

411340 406436 1,380 75 20 35 citations h-index g-index papers 78 78 78 1481 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Understanding spontaneous orientation polarization of amorphous organic semiconducting films and its application to devices. Synthetic Metals, 2022, 288, 117101.	2.1	14
2	Influence of intermolecular interactions on the formation of spontaneous orientation polarization in organic semiconducting films. Journal of the Society for Information Display, 2021, 29, 29-37.	0.8	16
3	Oxidative vaporization etching for molybdenum tip formation in air. Applied Surface Science, 2021, 542, 148642.	3.1	3
4	Enhancement of the molecular orientation of TPBi in coevaporated films of UGHâ€2 host molecules. Surface and Interface Analysis, 2021, 53, 460-465.	0.8	9
5	Active refractive index control using a stably evaporable perfluororesin for high-outcoupling-efficiency organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 11115-11125.	2.7	4
6	Investigating Bulk-to-Interface Doping Relaxation in Light-Emitting Electrochemical Cells via Displacement Current Measurements. ACS Applied Electronic Materials, 2021, 3, 2355-2361.	2.0	4
7	Effect of chemically induced permittivity changes on the plasmonic properties of metal nanoparticles. Communications Materials, 2021, 2, .	2.9	5
8	Molecular orientation anisotropy and hole transport properties of diluted semiconducting films of poly(p-phenylenevinylene) derivative. Organic Electronics, 2021, 96, 106246.	1.4	2
9	Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 8533-8538.	4.0	49
10	Spontaneous orientation polarization in organic light-emitting diodes. Japanese Journal of Applied Physics, 2019, 58, SF0801.	0.8	57
11	Photocontrollable ambipolar transistors with <i>ï€</i> -conjugated diarylethene photochromic channels. Japanese Journal of Applied Physics, 2019, 58, SDDH03.	0.8	7
12	Topological valley currents in bilayer graphene/hexagonal boron nitride superlattices. Applied Physics Letters, 2019, 114, .	1.5	29
13	Ambipolar carrier transport in an optically controllable diarylethene thin film transistor. Organic Electronics, 2019, 64, 205-208.	1.4	14
14	Observation of spontaneous orientation polarization in evaporated films of organic light-emitting diode materials. Organic Electronics, 2018, 58, 313-317.	1.4	50
15	Simultaneous Observation of the Electrical and Luminous Characteristics of Lightâ€Emitting Electrochemical Cells by Using a Displacement Current Measurement Technique. Advanced Optical Materials, 2018, 6, 1800318.	3.6	7
16	Degradation Process in Pentacene-Based Organic Field-Effect Transistors Evaluated by Three-Terminal Capacitance-Voltage Measurements. MRS Advances, 2017, 2, 1267-1272.	0.5	2
17	Molecular floating-gate single-electron transistor. Scientific Reports, 2017, 7, 1589.	1.6	12
18	Negative capacitance in an organic solar cell observed by displacement current measurement. Journal of Physics: Conference Series, 2017, 924, 012012.	0.3	4

#	Article	IF	CITATIONS
19	Observation of charge transport through CdSe/ZnS quantum dots in a single-electron transistor structure. Journal of Applied Physics, 2016, 120, .	1.1	5
20	Simulation of OLEDs with a polar electron transport layer. Organic Electronics, 2016, 39, 244-249.	1.4	37
21	Significant relaxation of residual negative carrier in polar Alq ₃ film directly detected by high-sensitivity photoemission. Applied Physics Express, 2016, 9, 021601.	1.1	22
22	Observation of ambipolar switching in a silver nanoparticle single-electron transistor with multiple molecular floating gates. Japanese Journal of Applied Physics, 2016, 55, 03DC02.	0.8	3
23	Spontaneous Orientation Polarization of Polar Molecules and Interface Properties of Organic Electronic Devices. Journal of the Vacuum Society of Japan, 2015, 58, 109-116.	0.3	3
24	Effects of Interface Electronic Structures on Transition Voltage Spectroscopy of Alkanethiol Molecular Junctions. Journal of Physical Chemistry C, 2015, 119, 12765-12771.	1.5	17
25	Charge carrier dynamics and degradation phenomena in organic light-emitting diodes doped by a thermally activated delayed fluorescence emitter. Organic Electronics, 2015, 17, 184-191.	1.4	43
26	Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements. Journal of Applied Physics, 2015, 117, .	1.1	46
27	Evaluation of internal potential distribution and carrier extraction properties of organic solar cells through Kelvin probe and time-of-flight measurements. Journal of Applied Physics, 2014, 116, .	1.1	16
28	Wavelength dependence and multiple-induced states in photoresponses of copper phthalocyanine-doped gold nanoparticle single-electron device. Japanese Journal of Applied Physics, 2014, 53, 01ACO2.	0.8	2
29	Complete Demonstration of the Valence Electronic Structure Inside a Practical Organic Solar Cell Probed by Low Energy Photoemission. Advanced Energy Materials, 2014, 4, 1301354.	10.2	35
30	Three-terminal capacitance–voltage measurements of pentacene field-effect transistors during operation. Organic Electronics, 2013, 14, 2491-2496.	1.4	8
31	Photoresponses in Gold Nanoparticle Single-Electron Transistors with Molecular Floating Gates. Japanese Journal of Applied Physics, 2013, 52, 110102.	0.8	13
32	Influence of the direction of spontaneous orientation polarization on the charge injection properties of organic light-emitting diodes. Applied Physics Letters, 2013, 102, .	1.5	62
33	Device properties of <inline-formula><math display="inline" overflow="scroll"><mrow><msub><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow><mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></mrow></msub></mrow></math></inline-formula>	gt; <mn&< td=""><td>kgt;3</td></mn&<>	kgt;3
34	Time-of-flight measurement as a tool to investigate the hole blocking nature of an operating organic light-emitting diode. , 2012, , .		0
35	Performance of Alq3-based Organic Light-Emitting Diode Fabricated under Light Irradiation. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 183-187.	0.1	1
36	Charge accumulation at organic semiconductor interfaces due to a permanent dipole moment and its orientational order in bilayer devices. Journal of Applied Physics, 2012, 111, .	1.1	145

#	Article	IF	CITATIONS
37	Electronic structures at organic heterojunctions of N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamin (NPB)-based organic light emitting diodes. Organic Electronics, 2012, 13, 2850-2855.	1.4	27
38	Photoinduced conductance switching in a dye-doped gold nanoparticle transistor. Applied Physics Letters, 2012, 101, .	1.5	12
39	Time-Of-Flight Technique to Examine Carrier Blocking Nature in Organic Light Emitting Diode. E-Journal of Surface Science and Nanotechnology, 2012, 10, 315-320.	0.1	1
40	Charge transport in various dimensions of small networks composed of gold nanoparticles and terthiophene wire-molecules. Applied Physics Letters, 2011, 98, 263114.	1.5	13
41	Characterization of the Interactions between Alq ₃ Thin Films and Al Probed by Two-Color Sum-Frequency Generation Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 9551-9560.	1.5	24
42	Impedance spectroscopy for pentacene field-effect transistor: channel formation process in transistor operation. Proceedings of SPIE, 2011 , , .	0.8	4
43	Displacement current measurement of a pentacene metalâ€"insulatorâ€"semiconductor device to investigate both quasi-static and dynamic carrier behavior using a combined waveform. Organic Electronics, 2011, 12, 1560-1565.	1.4	37
44	Displacement Current Measurement of MIS Devices with Ionic Liquids to Explore Carrier Behaviors in Model Interfaces of Organic Devices. Materials Research Society Symposia Proceedings, 2011, 1286, 39.	0.1	0
45	Capacitance-Voltage Measurement of an Ambipolar Pentacene Field Effect Transistor in Operation by Using Displacement Current Measurement. Materials Research Society Symposia Proceedings, 2011, 1287, 1.	0.1	2
46	Light- and ion-gauge-induced space charges in tris-(8-hydroxyquinolate) aluminum-based organic light-emitting diodes. Applied Physics Letters, 2010, 96, 143305.	1.5	20
47	A photoresponsive single electron transistor prepared from oligothiophene molecules and gold nanoparticles in a nanogap electrode. Applied Physics Letters, 2010, 96, 103117.	1.5	21
48	Interface electronic structures of 2-amino-4,5-imidazoledicarbonitrile on Ag and Al surfaces. Journal of Applied Physics, 2010, 108, .	1.1	6
49	Higher Resistance to Hole Injection and Electric Field Distribution in Organic Light-Emitting Diodes with Copper Phthalocyanine Interlayer. Japanese Journal of Applied Physics, 2010, 49, 01AA01.	0.8	25
50	Superperiodic conductance in a molecularly wired double-dot system self-assembled in a nanogap electrode. Journal of Applied Physics, 2010, 108, .	1.1	11
51	Light Effective Mass in the Widely-Dispersed Valence Band of Single Crystalline Rubrene Observed by High-Resolution Angle-Resolved Ultraviolet Photoelectron Spectroscopy. Materials Research Society Symposia Proceedings, 2009, 1197, 44.	0.1	0
52	Origins of Improved Holeâ€Injection Efficiency by the Deposition of MoO ₃ on the Polymeric Semiconductor Poly(dioctylfluoreneâ€ <i>alt</i> â€benzothiadiazole). Advanced Functional Materials, 2009, 19, 3746-3752.	7.8	99
53	Organic Mott insulator-based nanowire formed by using the Nanoscale-electrocrystallization. Thin Solid Films, 2008, 516, 2491-2494.	0.8	8
54	Observation of negative differential resistance and single-electron tunneling in electromigrated break junctions. Thin Solid Films, 2008, 516, 2762-2766.	0.8	11

#	Article	IF	CITATIONS
55	Mechanism of hole accumulation at $\hat{l}\pm\text{-NPD/Alq}$ 3 interface studied by displacement current measurement. , 2008, , .		8
56	Threshold voltage shift and formation of charge traps induced by light irradiation during the fabrication of organic light-emitting diodes. Applied Physics Letters, 2008, 92, 203306.	1.5	71
57	Direct observation of the electronic states of single crystalline rubrene under ambient condition by photoelectron yield spectroscopy. Applied Physics Letters, 2008, 93, 173305.	1.5	76
58	Photoemission measurement of extremely insulating materials: Capacitive photocurrent detection in photoelectron yield spectroscopy. Applied Physics Letters, 2008, 92, .	1.5	60
59	Does giant surface potential modify the performance of Alq 3 -based OLED?: voltage shift and charge traps induced by light irradiation. Proceedings of SPIE, 2008, , .	0.8	0
60	Fowler–Nordheim Tunneling in Electromigrated Break Junctions with Porphyrin Molecules. Japanese Journal of Applied Physics, 2007, 46, 2683-2686.	0.8	11
61	Fabrication of Au–molecule–Au junctions using electromigration method. Thin Solid Films, 2006, 499, 90-94.	0.8	15
62	Nano-interfacial space charge and single electron tunneling conduction in metal/polyimide/metal junctions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 345-349.	2.3	0
63	Contribution of the metalâ^•SiO2 interface potential to photoinduced switching in molecular single-electron tunneling junctions. Journal of Applied Physics, 2005, 97, 073513.	1.1	6
64	Polyimide as a tunneling barrier in single-electron tunneling junctions., 2005,, 439-452.		1
65	Photoinduced Gate Modulation and Temperature Dependence in the Coulomb Staircase of Organic Single Electron Tunneling Junctions. Japanese Journal of Applied Physics, 2004, 43, 2357-2361.	0.8	2
66	Single-electron transport in metal/polyimide:C60/metal junction. Thin Solid Films, 2003, 438-439, 369-373.	0.8	6
67	Interfacial electrostatic phenomena in polyimide Langmuir–Blodgett films in electron tunneling devices. Current Applied Physics, 2003, 3, 223-226.	1.1	0
68	STM observation of Coulomb staircase behavior through C60 clusters. Current Applied Physics, 2003, 3, 397-399.	1.1	3
69	Single electron tunneling organic devices. , 2003, , 31-39.		0
70	Analysis of Step Voltages in Single Electron Tunneling Devices Using Organic Thin Films. Japanese Journal of Applied Physics, 2002, 41, 2749-2752.	0.8	3
71	Addendum: "Space charge effect and the step voltages in metal/polyimide/rhodamine–dendorimer/polyimide/metal junctions―[J. Appl. Phys. 90, 1368 (2001)]. Journal of Applied Physics, 2002, 92, 1174-1176.	1.1	2
72	Step voltage in metal/polyimide/organic molecule/polyimide/metal junction. Current Applied Physics, 2002, 2, 279-283.	1.1	0

5

Үитака **N**одисні

#	Article	IF	CITATIONS
73	Effect of the metal/organic interface phenomena on the current–voltage characteristics of organic single electron tunneling device. Thin Solid Films, 2001, 393, 379-382.	0.8	10
74	Analysis of Potential Distribution and Current–Voltage Characteristic in Polyimide Langmuir–Blodgett Films. Japanese Journal of Applied Physics, 2001, 40, 4575-4580.	0.8	7
75	Space charge effect and the step voltages in metal/polyimide/rhodamine–dendorimer/polyimide/metal junctions. Journal of Applied Physics, 2001, 90, 1368-1375.	1.1	7