List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2925877/publications.pdf Version: 2024-02-01

IOSEDH HOLDEN

#	Article	IF	CITATIONS
1	Modelling the performance of bunds and ditch dams in the hydrological restoration of tropical peatlands. Hydrological Processes, 2022, 36, .	1.1	3
2	A strong mitigation scenario maintains climate neutrality of northern peatlands. One Earth, 2022, 5, 86-97.	3.6	14
3	Carbon concentrations in natural and restoration pools in blanket peatlands. Hydrological Processes, 2022, 36, .	1.1	5
4	Determining the drivers and rates of soil erosion on the Loess Plateau since 1901. Science of the Total Environment, 2022, 823, 153674.	3.9	39
5	Rainfall intensity and catchment size control storm runoff in a gullied blanket peatland. Journal of Hydrology, 2022, 609, 127688.	2.3	6
6	Doubling of annual forest carbon loss over the tropics during the early twenty-first century. Nature Sustainability, 2022, 5, 444-451.	11.5	47
7	Sustainable city development challenged by extreme weather in a warming world. Geography and Sustainability, 2022, 3, 114-118.	1.9	6
8	The top 100 global water questions: Results of a scoping exercise. One Earth, 2022, 5, 563-573.	3.6	15
9	Biogeochemical Distinctiveness of Peatland Ponds, Thermokarst Waterbodies, and Lakes. Geophysical Research Letters, 2022, 49, .	1.5	11
10	Effects of pipe outlet blocking on hydrological functioning in a degraded blanket peatland. Hydrological Processes, 2021, 35, e14102.	1.1	6
11	A review of the effects of vehicular access roads on peatland ecohydrological processes. Earth-Science Reviews, 2021, 214, 103528.	4.0	15
12	Overriding water table control on managed peatland greenhouse gas emissions. Nature, 2021, 593, 548-552.	13.7	172
13	A review of floodwater impacts on the stability of transportation embankments. Earth-Science Reviews, 2021, 215, 103553.	4.0	17
14	Blanket Peat Restoration: Numerical Study of the Underlying Processes Delivering Natural Flood Management Benefits. Water Resources Research, 2021, 57, e2020WR029209.	1.7	14
15	A comparison of porewater chemistry between intact, afforested and restored raised and blanket bogs. Science of the Total Environment, 2021, 766, 144496.	3.9	7
16	The effects of ditch dams on waterâ€level dynamics in tropical peatlands. Hydrological Processes, 2021, 35, e14174.	1.1	4
17	Evaluating impact from research: A methodological framework. Research Policy, 2021, 50, 104147.	3.3	83
18	Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia. Nature Sustainability, 2021, 4, 892-899.	11.5	56

#	Article	IF	CITATIONS
19	Knowledge gaps in our perceptual model of Great Britain's hydrology. Hydrological Processes, 2021, 35, e14288.	1.1	22
20	Some examples of spurious correlation in the literature. Hydrological Processes, 2021, 35, e14348.	1.1	1
21	The effect of forestâ€toâ€bog restoration on the hydrological functioning of raised and blanket bogs. Ecohydrology, 2021, 14, e2334.	1.1	4
22	Soil quality regeneration by grass-clover leys in arable rotations compared to permanent grassland: Effects on wheat yield and resilience to drought and flooding. Soil and Tillage Research, 2021, 212, 105037.	2.6	16
23	Upland grassland management influences organoâ€mineral soil properties and their hydrological function. Ecohydrology, 2021, 14, e2336.	1.1	2
24	Effects of winter wheat and endogeic earthworms on soil physical and hydraulic properties. Geoderma, 2021, 400, 115126.	2.3	11
25	Arable fields as potential reservoirs of biodiversity: Earthworm populations increase in new leys. Science of the Total Environment, 2021, 789, 147880.	3.9	12
26	Developing observational methods to drive future hydrological science: Can we make a start as a community?. Hydrological Processes, 2020, 34, 868-873.	1.1	34
27	Increased Dissolved Organic Carbon Concentrations in Peatâ€Fed UK Water Supplies Under Future Climate and Sulfate Deposition Scenarios. Water Resources Research, 2020, 56, e2019WR025592.	1.7	18
28	Soil erosion rates assessed by RUSLE and PESERA for a Chinese Loess Plateau catchment under landâ€cover changes. Earth Surface Processes and Landforms, 2020, 45, 707-722.	1.2	27
29	Controls on the spatial distribution of natural pipe outlets in heavily degraded blanket peat. Geomorphology, 2020, 367, 107322.	1.1	4
30	Seasonal vegetation and management influence overland flow velocity and roughness in upland grasslands. Hydrological Processes, 2020, 34, 3777-3791.	1.1	25
31	Contextualizing UK moorland burning studies with geographical variables and sponsor identity. Journal of Applied Ecology, 2020, 57, 2121-2131.	1.9	3
32	Effect of earthworms on soil physico-hydraulic and chemical properties, herbage production, and wheat growth on arable land converted to ley. Science of the Total Environment, 2020, 713, 136491.	3.9	26
33	Fire temperatures and Sphagnum damage during prescribed burning on peatlands. Ecological Indicators, 2019, 103, 471-478.	2.6	8
34	Sediment and fluvial particulate carbon flux from an eroding peatland catchment. Earth Surface Processes and Landforms, 2019, 44, 2186-2201.	1.2	5
35	Peatland vegetation change and establishment of re-introduced Sphagnum moss after prescribed burning. Biodiversity and Conservation, 2019, 28, 939-952.	1.2	11
36	The role of hedgerows in soil functioning within agricultural landscapes. Agriculture, Ecosystems and Environment, 2019, 273, 1-12.	2.5	83

#	Article	IF	CITATIONS
37	Patterns and drivers of peat topographic changes determined from Structureâ€fromâ€Motion photogrammetry at field plot and laboratory scales. Earth Surface Processes and Landforms, 2019, 44, 1274-1294.	1.2	2
38	Sediment deposition from eroding peatlands alters headwater invertebrate biodiversity. Global Change Biology, 2019, 25, 602-619.	4.2	15
39	The full carbon balance of a rewetted cropland fen and a conservation-managed fen. Agriculture, Ecosystems and Environment, 2019, 269, 1-12.	2.5	16
40	Waterâ€level dynamics in natural and artificial pools in blanket peatlands. Hydrological Processes, 2018, 32, 550-561.	1.1	11
41	Effects of rainfall, overland flow and their interactions on peatland interrill erosion processes. Earth Surface Processes and Landforms, 2018, 43, 1451-1464.	1.2	24
42	Methane and carbon dioxide fluxes from open and blocked ditches in a blanket bog. Plant and Soil, 2018, 424, 619-638.	1.8	13
43	PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena, 2018, 160, 134-140.	2.2	421
44	Prescribed burning, atmospheric pollution and grazing effects on peatland vegetation composition. Journal of Applied Ecology, 2018, 55, 559-569.	1.9	25
45	Peatland ditch blocking has no effect on dissolved organic matter (<scp>DOM</scp>) quality. Hydrological Processes, 2018, 32, 3891-3906.	1.1	16
46	Impacts of prescribed burning on Sphagnum mosses in a long-term peatland field experiment. PLoS ONE, 2018, 13, e0206320.	1.1	8
47	The effect of interactions between rainfall patterns and land-cover change on flood peaks in upland peatlands. Journal of Hydrology, 2018, 567, 546-559.	2.3	22
48	Effects of Needle Ice on Peat Erosion Processes During Overland Flow Events. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2107-2122.	1.0	8
49	Northward shift of the agricultural climate zone under 21st-century global climate change. Scientific Reports, 2018, 8, 7904.	1.6	118
50	Hotspots of peatland-derived potable water use identified by global analysis. Nature Sustainability, 2018, 1, 246-253.	11.5	46
51	Erosion in peatlands: Recent research progress and future directions. Earth-Science Reviews, 2018, 185, 870-886.	4.0	33
52	The impact of ditch blocking on fluvial carbon export from a <scp>UK</scp> blanket bog. Hydrological Processes, 2018, 32, 2141-2154.	1.1	13
53	Spatial variability of fluvial blanket peat erosion rates for the 21st Century modelled using PESERA-PEAT. Catena, 2017, 150, 302-316.	2.2	11
54	Erosion of Northern Hemisphere blanket peatlands under 21st entury climate change. Geophysical Research Letters, 2017, 44, 3615-3623.	1.5	18

#	Article	IF	CITATIONS
55	Water quality and <scp>UK</scp> agriculture: challenges and opportunities. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1201.	2.8	14
56	Comparison of soil erosion models used to study the Chinese Loess Plateau. Earth-Science Reviews, 2017, 170, 17-30.	4.0	134
57	An experimental study on the response of blanket bog vegetation and water tables to ditch blocking. Wetlands Ecology and Management, 2017, 25, 703-716.	0.7	14
58	Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resources Research, 2017, 53, 5209-5219.	1.7	269
59	A restatement of the natural science evidence concerning catchment-based â€ natural' flood management in the UK. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160706.	1.0	184
60	Stormwater reuse, a viable option: Fact or fiction?. Economic Analysis and Policy, 2017, 56, 14-17.	3.2	31
61	Modelling impacts of agricultural practice on flood peaks in upland catchments: An application of the distributed <scp>TOPMODEL</scp> . Hydrological Processes, 2017, 31, 4206-4216.	1.1	18
62	Simulating the longâ€ŧerm impacts of drainage and restoration on the ecohydrology of peatlands. Water Resources Research, 2017, 53, 6510-6522.	1.7	32
63	Organic sediment pulses impact rivers across multiple levels of ecological organization. Ecohydrology, 2017, 10, e1855.	1.1	11
64	Impacts of peat bulk density, ash deposition and rainwater chemistry on establishment of peatland mosses. Plant and Soil, 2017, 419, 41-52.	1.8	9
65	The impact of ditch blocking on the hydrological functioning of blanket peatlands. Hydrological Processes, 2017, 31, 525-539.	1.1	25
66	PESERAâ€PEAT: a fluvial erosion model for blanket peatlands. Earth Surface Processes and Landforms, 2016, 41, 2058-2077.	1.2	10
67	The impact of landâ€cover change on flood peaks in peatland basins. Water Resources Research, 2016, 52, 3477-3492.	1.7	45
68	Sporadic hotspots for physico-chemical retention of aquatic organic carbon: from peatland headwater source to sea. Aquatic Sciences, 2016, 78, 491-504.	0.6	27
69	Macroinvertebrate community assembly in pools created during peatland restoration. Science of the Total Environment, 2016, 569-570, 361-372.	3.9	19
70	Moorland vegetation burning debates should avoid contextomy and anachronism: a comment on Davies et al . (2016). Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160432.	1.8	8
71	The long-term fate of permafrost peatlands under rapid climate warming. Scientific Reports, 2016, 5, 17951.	1.6	87
72	Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quaternary Science Reviews, 2016, 152, 132-151.	1.4	106

#	Article	IF	CITATIONS
73	Evaluating the use of dominant microbial consumers (testate amoebae) as indicators of blanket peatland restoration. Ecological Indicators, 2016, 69, 318-330.	2.6	18
74	Prediction of blanket peat erosion across Great Britain under environmental change. Climatic Change, 2016, 134, 177-191.	1.7	15
75	Improved automation of dissolved organic carbon sampling for organic-rich surface waters. Science of the Total Environment, 2016, 543, 44-51.	3.9	7
76	Generating multi-proxy Holocene palaeoenvironmental records from blanket peatlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443, 216-229.	1.0	5
77	Regional variation in the biogeochemical and physical characteristics of natural peatland pools. Science of the Total Environment, 2016, 545-546, 84-94.	3.9	24
78	Biodiversity and ecosystem functioning in natural bog pools and those created by rewetting schemes. Wiley Interdisciplinary Reviews: Water, 2015, 2, 65-84.	2.8	36
79	Impact of prescribed burning on blanket peat hydrology. Water Resources Research, 2015, 51, 6472-6484.	1.7	33
80	Refining soil organic carbon stock estimates for China's palustrine wetlands. Environmental Research Letters, 2015, 10, 124016.	2.2	8
81	A distributed TOPMODEL for modelling impacts of land over change on river flow in upland peatland catchments. Hydrological Processes, 2015, 29, 2867-2879.	1.1	27
82	The influence of slope and peatland vegetation type on riverine dissolved organic carbon and water colour at different scales. Science of the Total Environment, 2015, 527-528, 530-539.	3.9	15
83	Vegetation management with fire modifies peatland soil thermal regime. Journal of Environmental Management, 2015, 154, 166-176.	3.8	28
84	Hydrologically driven ecosystem processes determine the distribution and persistence of ecosystem-specialist predators under climate change. Nature Communications, 2015, 6, 7851.	5.8	44
85	Evaluating the use of testate amoebae for palaeohydrological reconstruction in permafrost peatlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 424, 111-122.	1.0	45
86	Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data. Quaternary Science Reviews, 2015, 120, 107-117.	1.4	47
87	Effects of fire on the hydrology, biogeochemistry, and ecology of peatland river systems. Freshwater Science, 2015, 34, 1406-1425.	0.9	45
88	Using palaeoecology to support blanket peatland management. Ecological Indicators, 2015, 49, 110-120.	2.6	25
89	Concentration dynamics and biodegradability of dissolved organic matter in wetland soils subjected to experimental warming. Science of the Total Environment, 2014, 470-471, 907-916.	3.9	36
90	Relationships between anthropogenic pressures and ecosystem functions in UK blanket bogs: Linking process understanding to ecosystem service valuation. Ecosystem Services, 2014, 9, 5-19.	2.3	72

#	Article	IF	CITATIONS
91	Restoration of blanket peatlands. Journal of Environmental Management, 2014, 133, 193-205.	3.8	102
92	Evaluating approaches for estimating peat depth. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 567-576.	1.3	43
93	Fire decreases near-surface hydraulic conductivity and macropore flow in blanket peat. Hydrological Processes, 2014, 28, 2868-2876.	1.1	38
94	The dynamics of natural pipe hydrological behaviour in blanket peat. Hydrological Processes, 2013, 27, 1523-1534.	1.1	25
95	KNOWLEDGE MANAGEMENT FOR LAND DEGRADATION MONITORING AND ASSESSMENT: AN ANALYSIS OF CONTEMPORARY THINKING. Land Degradation and Development, 2013, 24, 307-322.	1.8	61
96	Hydrological hotspots in blanket peatlands: Spatial variation in peat permeability around a natural soil pipe. Water Resources Research, 2013, 49, 5342-5354.	1.7	26
97	Phosphorus fluxes at the sediment–water interface in subtropical wetlands subjected to experimental warming: A microcosm study. Chemosphere, 2013, 90, 1794-1804.	4.2	34
98	How Wetlands Affect Floods. Wetlands, 2013, 33, 773-786.	0.7	278
99	Rotational vegetation burning effects on peatland stream ecosystems. Journal of Applied Ecology, 2013, 50, 636-648.	1.9	28
100	Anticipating and Managing Future Trade-offs and Complementarities between Ecosystem Services. Ecology and Society, 2013, 18, .	1.0	70
101	River Ecosystem Response to Prescribed Vegetation Burning on Blanket peatland. PLoS ONE, 2013, 8, e81023.	1.1	26
102	CHINA'S WATER MANAGEMENT - CHALLENGES AND SOLUTIONS. Environmental Engineering and Management Journal, 2013, 12, 1311-1321.	0.2	8
103	Natural pipes in blanket peatlands: major point sources for the release of carbon to the aquatic system. Global Change Biology, 2012, 18, 3568-3580.	4.2	36
104	Variable source and age of different forms of carbon released from natural peatland pipes. Journal of Geophysical Research, 2012, 117, .	3.3	35
105	Multi-scale relationship between peatland vegetation type and dissolved organic carbon concentration. Ecological Engineering, 2012, 47, 182-188.	1.6	43
106	Improving particulate carbon loss estimates in eroding peatlands through the use of terrestrial laser scanning. Geomorphology, 2012, 179, 240-248.	1.1	21
107	Catchmentâ€scale peatland restoration benefits stream ecosystem biodiversity. Journal of Applied Ecology, 2012, 49, 182-191.	1.9	48
108	The impacts of prescribed moorland burning on water colour and dissolved organic carbon: A critical synthesis. Journal of Environmental Management, 2012, 101, 92-103.	3.8	46

#	Article	IF	CITATIONS
109	Morphological change of natural pipe outlets in blanket peat. Earth Surface Processes and Landforms, 2012, 37, 109-118.	1.2	17
110	The release of phosphorus from sediment into water in subtropical wetlands: a warming microcosm experiment. Hydrological Processes, 2012, 26, 15-26.	1.1	21
111	Continuous measurement of spectrophotometric absorbance in peatland streamwater in northern England: implications for understanding fluvial carbon fluxes. Hydrological Processes, 2012, 26, 27-39.	1.1	42
112	Greenhouse gas losses from peatland pipes: A major pathway for loss to the atmosphere?. Journal of Geophysical Research, 2011, 116, .	3.3	18
113	Nearâ€surface macropore flow and saturated hydraulic conductivity in drained and restored blanket peatlands. Soil Use and Management, 2011, 27, 247-254.	2.6	20
114	Water table dynamics in undisturbed, drained and restored blanket peat. Journal of Hydrology, 2011, 402, 103-114.	2.3	119
115	The impact of drain blocking on an upland blanket bog during storm and drought events, and the importance of sampling-scale. Journal of Hydrology, 2011, 404, 198-208.	2.3	19
116	Hydrological modelling of drained blanket peatland. Journal of Hydrology, 2011, 407, 81-93.	2.3	39
117	Ditch blocking, water chemistry and organic carbon flux: Evidence that blanket bog restoration reduces erosion and fluvial carbon loss. Science of the Total Environment, 2011, 409, 2010-2018.	3.9	68
118	Crossâ€scale monitoring and assessment of land degradation and sustainable land management: A methodological framework for knowledge management. Land Degradation and Development, 2011, 22, 261-271.	1.8	116
119	Temperature and surface lapse rate change: a study of the UK's longest upland instrumental record. International Journal of Climatology, 2011, 31, 907-919.	1.5	70
120	Spatial and seasonal variability of peatland stream ecosystems. Ecohydrology, 2011, 4, 577-588.	1.1	10
121	The impact of peatland drain-blocking on dissolved organic carbon loss and discolouration of water; results from a national survey. Journal of Hydrology, 2010, 381, 112-120.	2.3	84
122	Long-term change in storm hydrographs in response to peatland vegetation change. Journal of Hydrology, 2010, 389, 336-343.	2.3	42
123	Recovery of water tables in Welsh blanket bog after drain blocking: Discharge rates, time scales and the influence of local conditions. Journal of Hydrology, 2010, 391, 377-386.	2.3	59
124	Sensitivity of blanket peat vegetation and hydrochemistry to local disturbances. Science of the Total Environment, 2010, 408, 5028-5034.	3.9	14
125	Spatial and temporal variability in the relationship between water colour and dissolved organic carbon in blanket peat pore waters. Science of the Total Environment, 2010, 408, 6235-6242.	3.9	20
126	Priority water research questions as determined by UK practitioners and policy makersâ~†. Science of the Total Environment, 2010, 409, 256-266.	3.9	68

#	Article	IF	CITATIONS
127	A comparison of stream water temperature regimes from open and afforested moorland, Yorkshire Dales, northern England. Hydrological Processes, 2010, 24, 3206-3218.	1.1	33
128	Changing temperature and rainfall gradients in the British Uplands. Climate Research, 2010, 45, 57-70.	0.4	32
129	The MILLENNIA peat cohort model: predicting past, present and future soil carbon budgets and fluxes under changing climates in peatlands. Climate Research, 2010, 45, 207-226.	0.4	45
130	Can carbon offsetting pay for upland ecological restoration?. Science of the Total Environment, 2009, 408, 26-36.	3.9	42
131	Flow through macropores of different size classes in blanket peat. Journal of Hydrology, 2009, 364, 342-348.	2.3	50
132	Topographic controls upon soil macropore flow. Earth Surface Processes and Landforms, 2009, 34, 345-351.	1.2	32
133	A critical review of hydrological data collection for assessing preservation risk for urban waterlogged archaeology: A case study from the City of York, UK. Journal of Environmental Management, 2009, 90, 3197-3204.	3.8	31
134	Drain-blocking techniques on blanket peat: A framework for best practice. Journal of Environmental Management, 2009, 90, 3512-3519.	3.8	62
135	Using scenarios to explore UK upland futures. Futures, 2009, 41, 619-630.	1.4	29
136	Morphological characterization of solute flow in a brown earth grassland soil with cranefly larvae burrows (leatherjackets). Geoderma, 2009, 152, 181-186.	2.3	10
137	The future of the uplands. Land Use Policy, 2009, 26, S204-S216.	2.5	80
138	Environmental effects of drainage, drain-blocking and prescribed vegetation burning in UK upland peatlands. Progress in Physical Geography, 2009, 33, 49-79.	1.4	110
139	The impact of climate change on archaeological resources in Britain: a catchment scale assessment. Climatic Change, 2008, 91, 405-422.	1.7	32
140	Overland flow velocity and roughness properties in peatlands. Water Resources Research, 2008, 44, .	1.7	90
141	Corrigendum to "Peatlands and the carbon cycle: from local processes to global implications a synthesis" published in Biogeosciences, 5, 1475–1491, 2008. Biogeosciences, 2008, 5, 1739-1739.	1.3	29
142	Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences, 2008, 5, 1475-1491.	1.3	630
143	The timing and magnitude of coarse sediment transport events within an upland, temperate gravel-bed river. Geomorphology, 2007, 83, 152-182.	1.1	59

Adaptive farming strategies for dynamic economic environment. , 2007, , .

3

#	Article	IF	CITATIONS
145	Short-term impact of peat drain-blocking on water colour, dissolved organic carbon concentration, and water table depth. Journal of Hydrology, 2007, 337, 315-325.	2.3	101
146	Erosion and natural revegetation associated with surface land drains in upland peatlands. Earth Surface Processes and Landforms, 2007, 32, 1547-1557.	1.2	60
147	A plea for more careful presentation of near-surface air temperature data in geomorphology. Earth Surface Processes and Landforms, 2007, 32, 1433-1436.	1.2	6
148	Environmental change in moorland landscapes. Earth-Science Reviews, 2007, 82, 75-100.	4.0	229
149	Sediment and particulate carbon removal by pipe erosion increase over time in blanket peatlands as a consequence of land drainage. Journal of Geophysical Research, 2006, 111, .	3.3	51
150	Impact of Land Drainage on Peatland Hydrology. Journal of Environmental Quality, 2006, 35, 1764-1778.	1.0	154
151	Learning from Doing Participatory Rural Research: Lessons from the Peak District National Park. Journal of Agricultural Economics, 2006, 57, 259-275.	1.6	158
152	Geography fieldwork in a ?risk society?. Area, 2006, 38, 413-420.	1.0	19
153	Hydrological controls of in situ preservation of waterlogged archaeological deposits. Earth-Science Reviews, 2006, 78, 59-83.	4.0	72
154	Drain blocking: An effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland. Science of the Total Environment, 2006, 367, 811-821.	3.9	173
155	Chapter 22 Impacts of artificial drainage of peatlands on runoff production and water quality. Developments in Earth Surface Processes, 2006, 9, 501-528.	2.8	14
156	Chapter 14 Peatland hydrology. Developments in Earth Surface Processes, 2006, , 319-346.	2.8	20
157	Peatland hydrology and carbon release: why small-scale process matters. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 2891-2913.	1.6	301
158	Controls of soil pipe frequency in upland blanket peat. Journal of Geophysical Research, 2005, 110, .	3.3	71
159	Piping and woody plants in peatlands: Cause or effect?. Water Resources Research, 2005, 41, .	1.7	46
160	Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography, 2004, 28, 95-123.	1.4	412
161	Hydrological controls of surficial mass movements in peat. Earth-Science Reviews, 2004, 67, 139-156.	4.0	74
162	UK tornado climatology and the development of simple prediction tools. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 1009-1021.	1.0	13

#	Article	IF	CITATIONS
163	Hydrological connectivity of soil pipes determined by ground-penetrating radar tracer detection. Earth Surface Processes and Landforms, 2004, 29, 437-442.	1.2	74
164	A network-index-based version of TOPMODEL for use with high-resolution digital topographic data. Hydrological Processes, 2004, 18, 191-201.	1.1	140
165	Hydraulic conductivity in upland blanket peat: measurement and variability. Hydrological Processes, 2003, 17, 1227-1237.	1.1	118
166	Hydrological studies on blanket peat: the significance of the acrotelm-catotelm model. Journal of Ecology, 2003, 91, 86-102.	1.9	161
167	Runoff production in blanket peat covered catchments. Water Resources Research, 2003, 39, .	1.7	150
168	Piping and pipeflow in a deep peat catchment. Catena, 2002, 48, 163-199.	2.2	134
169	Infiltration, runoff and sediment production in blanket peat catchments: implications of field rainfall simulation experiments. Hydrological Processes, 2002, 16, 2537-2557.	1.1	95
170	Application of ground-penetrating radar to the identification of subsurface piping in blanket peat. Earth Surface Processes and Landforms, 2002, 27, 235-249.	1.2	98
171	Laboratory experiments on drought and runoff in blanket peat. European Journal of Soil Science, 2002, 53, 675-690.	1.8	58
172	The Moor House longâ€ŧerm upland temperature record: New evidence of recent warming. Weather, 2002, 57, 119-127.	0.6	25
173	Macroporosity and infiltration in blanket peat: the implications of tension disc infiltrometer measurements. Hydrological Processes, 2001, 15, 289-303.	1.1	83
174	Runoff generation and water table fluctuations in blanket peat: evidence from UK data spanning the dry summer of 1995. Journal of Hydrology, 1999, 221, 141-160.	2.3	203
175	The Role of Natural Soil Pipes in Water and Carbon Transfer in and from Peatlands. Geophysical Monograph Series, 0, , 251-264.	0.1	8
176	Peatland conservation at the science–practice interface. , 0, , 358-374.		1
177	Aquatic carbon concentrations and fluxes in a degraded blanket peatland with piping and pipe outlet blocking. Earth Surface Processes and Landforms, 0, , .	1.2	2
178	A comparison of peat properties in intact, afforested and restored raised and blanket bogs. Soil Use and Management, 0, , .	2.6	1