
Niels O Verhulst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2925124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skin bacterial volatiles: propelling the future of vector control. Trends in Parasitology, 2022, 38, 15-22.	1.5	14
2	Xenosurveillance proof-of-principle: Detection of Toxoplasma gondii and SARS-CoV-2 antibodies in mosquito blood meals by (pan)-specific ELISAs. Current Research in Parasitology and Vector-borne Diseases, 2022, 2, 100076.	0.7	6
3	Video analysis of the locomotory behaviour of Aedes aegypti and Ae. japonicus mosquitoes under different temperature regimes in a laboratory setting. Journal of Thermal Biology, 2022, 105, 103205.	1.1	10
4	5. Effect of host preferences of mosquitoes on disease transmission between wildlife and humans. Ecology and Control of Vector-Borne Diseases, 2022, , 97-112.	0.3	0
5	Potential mechanical transmission of Lumpy skin disease virus (LSDV) by the stable fly (Stomoxys) Tj ETQq1 1 (0.784314 r 0.8	gBT_/Overloc
6	Spatial repellency and vapour toxicity of transfluthrin against the biting midges Culicoides nubeculosus and C. sonorensis (Ceratopogonidae). Current Research in Insect Science, 2021, 1, 100002.	0.8	5
7	Attraction of mosquitoes to primate odours and implications for zoonotic Plasmodium transmission. Medical and Veterinary Entomology, 2020, 34, 17-26.	0.7	9
8	Thermal preferences of subtropical Aedes aegypti and temperate Ae. japonicus mosquitoes. Journal of Thermal Biology, 2020, 91, 102637.	1.1	22
9	Optimisation and field validation of odour-baited traps for surveillance of Aedes aegypti adults in Paramaribo, Suriname. Parasites and Vectors, 2020, 13, 121.	1.0	17
10	Effect of overwintering on survival and vector competence of the West Nile virus vector Culex pipiens. Parasites and Vectors, 2019, 12, 147.	1.0	47
11	<i>Plasmodium</i> -associated changes in human odor attract mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4209-E4218.	3.3	105
12	Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoâ€evolutionary implications. New Phytologist, 2018, 220, 739-749.	3.5	101
13	Do apes smell like humans? The role of skin bacteria and volatiles of primates in mosquito host selection. Journal of Experimental Biology, 2018, 221, .	0.8	24
14	Impact of Skin Microbiome on Attractiveness to Arthropod Vectors and Pathogen Transmission. , 2018, , 55-81.		3
15	Chemical signaling in mosquito–host interactions: the role of human skin microbiota. Current Opinion in Insect Science, 2017, 20, 68-74.	2.2	33
16	Acarological Risk of <i>Borrelia burgdorferi</i> Sensu Lato Infections Across Space and Time in The Netherlands. Vector-Borne and Zoonotic Diseases, 2017, 17, 99-107.	0.6	22
17	Mechanisms of Plasmodium-Enhanced Attraction of Mosquito Vectors. Trends in Parasitology, 2017, 33, 961-973.	1.5	26
18	Gametocytemia and Attractiveness of Plasmodium falciparum–Infected Kenyan Children to Anopheles gambiae Mosquitoes. Journal of Infectious Diseases, 2017, 216, 291-295.	1.9	57

NIELS O VERHULST

#	Article	IF	CITATIONS
19	Variation in host preferences of malaria mosquitoes is mediated by skin bacterial volatiles. Medical and Veterinary Entomology, 2017, 31, 320-326.	0.7	47
20	Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds. Scientific Reports, 2016, 6, 27141.	1.6	43
21	Mosquito host preferences affect their response to synthetic and natural odour blends. Malaria Journal, 2015, 14, 133.	0.8	36
22	Mosquito Attraction: Crucial Role of Carbon Dioxide in Formulation of a Five-Component Blend of Human-Derived Volatiles. Journal of Chemical Ecology, 2015, 41, 567-573.	0.9	62
23	Modification of the Suna Trap for Improved Survival and Quality of Mosquitoes in Support of Epidemiological Studies. Journal of the American Mosquito Control Association, 2015, 31, 223-232.	0.2	10
24	Skin Microbiota and Attractiveness to Mosquitoes. , 2015, , 591-595.		1
25	Understanding the Long-Lasting Attraction of Malaria Mosquitoes to Odor Baits. PLoS ONE, 2015, 10, e0121533.	1.1	17
26	Field evaluation of a novel synthetic odour blend and of the synergistic role of carbon dioxide for sampling host-seeking Aedes albopictus adults in Rome, Italy. Parasites and Vectors, 2014, 7, 580.	1.0	38
27	Advances in methods for colour marking of mosquitoes. Parasites and Vectors, 2013, 6, 200.	1.0	51
28	Host Preferences of Blood-Feeding Mosquitoes. Annual Review of Entomology, 2013, 58, 433-453.	5.7	471
29	Relation between HLA genes, human skin volatiles and attractiveness of humans to malaria mosquitoes. Infection, Genetics and Evolution, 2013, 18, 87-93.	1.0	41
30	Skin Microbiota and Attractiveness to Mosquitoes. , 2013, , 1-6.		0
31	Mosquitoes as Potential Bridge Vectors of Malaria Parasites from Non-Human Primates to Humans. Frontiers in Physiology, 2012, 3, 197.	1.3	17
32	Human skin microbiota and their volatiles as odour baits for the malaria mosquito Anopheles gambiae s.s. Entomologia Experimentalis Et Applicata, 2011, 139, 170-179.	0.7	35
33	Sweaty skin: an invitation to bite?. Trends in Parasitology, 2011, 27, 143-148.	1.5	105
34	Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota. Malaria Journal, 2011, 10, 28.	0.8	52
35	Geographic and Temporal Variations in Population Dynamics of <i>Ixodes ricinus</i> and Associated <i>Borrelia</i> Infections in The Netherlands. Vector-Borne and Zoonotic Diseases, 2011, 11, 523-532.	0.6	52
36	Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes. PLoS ONE, 2011, 6, e28991.	1.1	208

NIELS O VERHULST

#	Article	IF	CITATIONS
37	Chemical ecology of interactions between human skin microbiota and mosquitoes. FEMS Microbiology Ecology, 2010, 74, 1-9.	1.3	74
38	Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae s.s Malaria Journal, 2010, 9, .	0.8	3
39	Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malaria Journal, 2010, 9, 292.	0.8	133
40	Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria. PLoS ONE, 2010, 5, e15829.	1.1	128
41	Cultured skin microbiota attracts malaria mosquitoes. Malaria Journal, 2009, 8, 302.	0.8	120
42	The phenology and population dynamics of Culicoides spp. in different ecosystems in The Netherlands. Preventive Veterinary Medicine, 2008, 87, 41-54.	0.7	56
43	The search for sex pheromones in malaria mosquitoes. Peer Community in Ecology, 0, , .	0.0	Ο