List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/292470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overview on Protein Extraction and Purification Using Ionic-Liquid-Based Processes. Journal of Solution Chemistry, 2022, 51, 243-278.	0.6	10
2	Using aqueous solutions of ionic liquids as chlorophyll eluents in solid-phase extraction processes. Chemical Engineering Journal, 2022, 428, 131073.	6.6	14
3	Separation of Albumin from Bovine Serum Applying Ionic-Liquid-Based Aqueous Biphasic Systems. Applied Sciences (Switzerland), 2022, 12, 707.	1.3	5
4	Enhanced Enzyme Reuse through the Bioconjugation of L-Asparaginase and Silica-Based Supported Ionic Liquid-like Phase Materials. Molecules, 2022, 27, 929.	1.7	5
5	Improved Production of 5-Hydroxymethylfurfural in Acidic Deep Eutectic Solvents Using Microwave-Assisted Reactions. International Journal of Molecular Sciences, 2022, 23, 1959.	1.8	6
6	Boosting antibiotics performance by new formulations with deep eutectic solvents. International Journal of Pharmaceutics, 2022, 616, 121566.	2.6	10
7	Supported Ionic Liquids Used as Chromatographic Matrices in Bioseparation—An Overview. Molecules, 2022, 27, 1618.	1.7	6
8	High Performance of Ionic-Liquid-Based Materials to Remove Insecticides. International Journal of Molecular Sciences, 2022, 23, 2989.	1.8	5
9	Efficient Extraction of the RuBisCO Enzyme from Spinach Leaves Using Aqueous Solutions of Biocompatible Ionic Liquids. Sustainable Chemistry, 2022, 3, 1-18.	2.2	6
10	Deep Eutectic Solvent Formulations and Alginate-Based Hydrogels as a New Partnership for the Transdermal Administration of Anti-Inflammatory Drugs. Pharmaceutics, 2022, 14, 827.	2.0	13
11	Immobilization and Characterization of L-Asparaginase over Carbon Xerogels. BioTech, 2022, 11, 10.	1.3	4
12	Integrated Approach to Extract and Purify Proteins from Honey by Ionic Liquid-Based Three-Phase Partitioning. ACS Sustainable Chemistry and Engineering, 2022, 10, 9275-9281.	3.2	6
13	Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media – A review. Analytica Chimica Acta, 2021, 1143, 225-249.	2.6	45
14	Unveiling Modifications of Biomass Polysaccharides during Thermal Treatment in Cholinium Chloride : Lactic Acid Deep Eutectic Solvent. ChemSusChem, 2021, 14, 686-698.	3.6	26
15	Purification of green fluorescent protein using fast centrifugal partition chromatography. Separation and Purification Technology, 2021, 257, 117648.	3.9	5
16	Optimization of FAME production from blends of waste cooking oil and refined palm oil using biomass fly ash as a catalyst. Renewable Energy, 2021, 163, 1637-1647.	4.3	17
17	Nucleophilic degradation of diazinon in thermoreversible polymer–polymer aqueous biphasic systems. Physical Chemistry Chemical Physics, 2021, 23, 4133-4140.	1.3	0
18	Oneâ€5tep Allâ€Aqueous Interfacial Assembly of Robust Membranes for Longâ€Term Encapsulation and Culture of Adherent Stem/Stromal Cells. Advanced Healthcare Materials, 2021, 10, e2100266.	3.9	13

#	Article	IF	CITATIONS
19	Protein-olive oil-in-water nanoemulsions as encapsulation materials for curcumin acting as anticancer agent towards MDA-MB-231 cells. Scientific Reports, 2021, 11, 9099.	1.6	21
20	Enhancing Artemisinin Solubility in Aqueous Solutions: Searching for Hydrotropes based on Ionic Liquids. Fluid Phase Equilibria, 2021, 534, 112961.	1.4	11
21	Sustainable liquid supports for laccase immobilization and reuse: Degradation of dyes in aqueous biphasic systems. Biotechnology and Bioengineering, 2021, 118, 2514-2523.	1.7	10
22	Ionic Liquids in Drug Delivery. Encyclopedia, 2021, 1, 324-339.	2.4	24
23	Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation. Vaccines, 2021, 9, 328.	2.1	19
24	Pelletized biomass fly ash for FAME production: Optimization of a continuous process. Fuel, 2021, 293, 120425.	3.4	7
25	25th Anniversary of Molecules—Recent Advances in Green Chemistry. Molecules, 2021, 26, 3768.	1.7	0
26	L-asparaginase production review: bioprocess design and biochemical characteristics. Applied Microbiology and Biotechnology, 2021, 105, 4515-4534.	1.7	35
27	Integrated Biocatalytic Platform Based on Aqueous Biphasic Systems for the Sustainable Oligomerization of Rutin. ACS Sustainable Chemistry and Engineering, 2021, 9, 9941-9950.	3.2	11
28	Integrated Production and Separation of Furfural Using an Acidic-Based Aqueous Biphasic System. ACS Sustainable Chemistry and Engineering, 2021, 9, 12205-12212.	3.2	3
29	L-Asparaginase-Based Biosensors. Encyclopedia, 2021, 1, 848-858.	2.4	7
30	Advances Achieved by Ionic-Liquid-Based Materials as Alternative Supports and Purification Platforms for Proteins and Enzymes. Nanomaterials, 2021, 11, 2542.	1.9	8
31	Advances Brought by Hydrophilic Ionic Liquids in Fields Involving Pharmaceuticals. Materials, 2021, 14, 6231.	1.3	7
32	Efficient Isolation of Bacterial RNAs Using Silica-Based Materials Modified with Ionic Liquids. Life, 2021, 11, 1090.	1.1	4
33	Towards the Use of Adsorption Methods for the Removal of Purines from Beer. Molecules, 2021, 26, 6460.	1.7	7
34	Opposite Effects Induced by Cholinium-Based Ionic Liquid Electrolytes in the Formation of Aqueous Biphasic Systems Comprising Polyethylene Clycol and Sodium Polyacrylate. Molecules, 2021, 26, 6612.	1.7	1
35	Superior operational stability of immobilized l-asparaginase over surface-modified carbon nanotubes. Scientific Reports, 2021, 11, 21529.	1.6	6
36	Enhanced Dissolution of Chitin Using Acidic Deep Eutectic Solvents: A Sustainable and Simple Approach to Extract Chitin from Crayfish shell Wastes as Alternative Feedstocks. ACS Sustainable Chemistry and Engineering, 2021, 9, 16073-16081.	3.2	23

#	Article	IF	CITATIONS
37	Enhanced Furfural Production in Deep Eutectic Solvents Comprising Alkali Metal Halides as Additives. Molecules, 2021, 26, 7374.	1.7	5
38	Chlorophylls Extraction from Spinach Leaves Using Aqueous Solutions of Surface-Active Ionic Liquids. Sustainable Chemistry, 2021, 2, 764-777.	2.2	6
39	Supported ionic liquids as efficient materials to remove non-steroidal anti-inflammatory drugs from aqueous media. Chemical Engineering Journal, 2020, 381, 122616.	6.6	40
40	Performance of tetraalkylammonium-based ionic liquids as constituents of aqueous biphasic systems in the extraction of ovalbumin and lysozyme. Separation and Purification Technology, 2020, 233, 116019.	3.9	39
41	Extraction of High Value Triterpenic Acids from Eucalyptus globulus Biomass Using Hydrophobic Deep Eutectic Solvents. Molecules, 2020, 25, 210.	1.7	31
42	Enhanced Conversion of Xylan into Furfural using Acidic Deep Eutectic Solvents with Dual Solvent and Catalyst Behavior. ChemSusChem, 2020, 13, 784-790.	3.6	63
43	Insights on the DNA Stability in Aqueous Solutions of Ionic Liquids. Frontiers in Bioengineering and Biotechnology, 2020, 8, 547857.	2.0	16
44	Selective Separation of Manganese, Cobalt, and Nickel in a Fully Aqueous System. ACS Sustainable Chemistry and Engineering, 2020, 8, 12260-12269.	3.2	18
45	Development and characterization of a novel <scp>l</scp> -asparaginase/MWCNT nanobioconjugate. RSC Advances, 2020, 10, 31205-31213.	1.7	20
46	Towards the differential diagnosis of prostate cancer by the pre-treatment of human urine using ionic liquids. Scientific Reports, 2020, 10, 14931.	1.6	11
47	Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules, 2020, 25, 3652.	1.7	99
48	Recent Strategies and Applications for l-Asparaginase Confinement. Molecules, 2020, 25, 5827.	1.7	47
49	Improved ionic-liquid-functionalized macroporous supports able to purify nucleic acids in one step. Materials Today Bio, 2020, 8, 100086.	2.6	7
50	The Role of Ionic Liquids in the Pharmaceutical Field: An Overview of Relevant Applications. International Journal of Molecular Sciences, 2020, 21, 8298.	1.8	108
51	Supported Ionic Liquids for the Efficient Removal of Acetylsalicylic Acid from Aqueous Solutions. European Journal of Inorganic Chemistry, 2020, 2020, 2380-2389.	1.0	8
52	Aqueous solutions of deep eutectic systems as reaction media for the saccharification and fermentation of hardwood xylan into xylitol. Bioresource Technology, 2020, 311, 123524.	4.8	32
53	Instantaneous fibrillation of egg white proteome with ionic liquid and macromolecular crowding. Communications Materials, 2020, 1, .	2.9	7
54	Valorization of Expired Energy Drinks by Designed and Integrated Ionic Liquid-Based Aqueous Biphasic Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 5683-5692.	3.2	12

#	Article	IF	CITATIONS
55	Non-ionic hydrophobic eutectics – versatile solvents for tailored metal separation and valorisation. Green Chemistry, 2020, 22, 2810-2820.	4.6	67
56	Hybrid alginate–protein cryogel beads: efficient and sustainable bio-based materials to purify immunoglobulin G antibodies. Green Chemistry, 2020, 22, 2225-2233.	4.6	17
57	Recovery of immunoglobulin G from rabbit serum using κ-carrageenan-modified hybrid magnetic nanoparticles. International Journal of Biological Macromolecules, 2020, 150, 914-921.	3.6	9
58	Enhanced Extraction of Levodopa from <i>Mucuna pruriens</i> Seeds Using Aqueous Solutions of Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 6682-6689.	3.2	12
59	Aqueous biphasic systems comprising copolymers and cholinium-based salts or ionic liquids: Insights on the mechanisms responsible for their creation. Separation and Purification Technology, 2020, 248, 117050.	3.9	15
60	Biomedical-related applications of functionalized nanomaterials. , 2020, , 205-230.		0
61	Use of Nanomaterials in the Pretreatment of Water Samples for Environmental Analysis. Advanced Structured Materials, 2019, , 103-142.	0.3	2
62	Use of Ionic Liquids as Cosurfactants in Mixed Aqueous Micellar Two-Phase Systems to Improve the Simultaneous Separation of Immunoglobulin G and Human Serum Albumin from Expired Human Plasma. ACS Sustainable Chemistry and Engineering, 2019, 7, 15102-15113.	3.2	21
63	Design of Nonsteroidal Anti-Inflammatory Drug-Based Ionic Liquids with Improved Water Solubility and Drug Delivery. ACS Sustainable Chemistry and Engineering, 2019, 7, 14126-14134.	3.2	51
64	Recovery of Syringic Acid from Industrial Food Waste with Aqueous Solutions of Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 14143-14152.	3.2	17
65	Continuous separation of cytochrome-c PEGylated conjugates by fast centrifugal partition chromatography. Green Chemistry, 2019, 21, 5501-5506.	4.6	10
66	Polyvinylidene fluoride–Hyaluronic acid wound dressing comprised of ionic liquids for controlled drug delivery and dual therapeutic behavior. Acta Biomaterialia, 2019, 100, 142-157.	4.1	45
67	Liquid–Liquid Equilibrium and Extraction Performance of Aqueous Biphasic Systems Composed of Water, Cholinium Carboxylate Ionic Liquids and K ₂ CO ₃ . Journal of Chemical & Engineering Data, 2019, 64, 4946-4955.	1.0	5
68	Application of Ionic Liquids in Separation and Fractionation Processes. , 2019, , 637-665.		1
69	Sustainable strategies based on glycine–betaine analogue ionic liquids for the recovery of monoclonal antibodies from cell culture supernatants. Green Chemistry, 2019, 21, 5671-5682.	4.6	31
70	Simultaneous Separation of Antioxidants and Carbohydrates From Food Wastes Using Aqueous Biphasic Systems Formed by Cholinium-Derived Ionic Liquids. Frontiers in Chemistry, 2019, 7, 459.	1.8	15
71	Laccase Activation in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2019, 7, 11806-11814.	3.2	95
72	Odd–Even Effect in the Formation and Extraction Performance of Ionic-Liquid-Based Aqueous Biphasic Systems. Industrial & Engineering Chemistry Research, 2019, 58, 8323-8331.	1.8	10

#	Article	IF	CITATIONS
73	Integrated Extraction-Preservation Strategies for RNA Using Biobased Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 9439-9448.	3.2	20
74	Deep eutectic solvents comprising active pharmaceutical ingredients in the development of drug delivery systems. Expert Opinion on Drug Delivery, 2019, 16, 497-506.	2.4	88
75	Enhanced biocatalytic sustainability of laccase by immobilization on functionalized carbon nanotubes/polysulfone membranes. Chemical Engineering Journal, 2019, 355, 974-985.	6.6	124
76	Solvatochromism as a new tool to distinguish structurally similar compounds. Journal of Molecular Liquids, 2019, 274, 740-745.	2.3	8
77	Binary Mixtures of Ionic Liquids in Aqueous Solution: Towards an Understanding of Their Salting-In/Salting-Out Phenomena. Journal of Solution Chemistry, 2019, 48, 983-991.	0.6	6
78	Solid catalysts obtained from wastes for FAME production using mixtures of refined palm oil and waste cooking oils. Renewable Energy, 2019, 136, 873-883.	4.3	29
79	Anti-inflammatory and antioxidant nanostructured cellulose membranes loaded with phenolic-based ionic liquids for cutaneous application. Carbohydrate Polymers, 2019, 206, 187-197.	5.1	66
80	Understanding the effect of ionic liquids as adjuvants in the partition of biomolecules in aqueous two-phase systems formed by polymers and weak salting-out agents. Biochemical Engineering Journal, 2019, 141, 239-246.	1.8	40
81	A simple approach for the determination and characterization of ternary phase diagrams of aqueous two-phase systems composed of water, polyethylene glycol and sodium carbonate. Chemical Engineering Education, 2019, 53, 112-120.	0.2	1
82	Mechanisms ruling the partition of solutes in ionic-liquid-based aqueous biphasic systems – the multiple effects of ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 8411-8422.	1.3	13
83	Economic evaluation of the primary recovery of tetracycline with traditional and novel aqueous two-phase systems. Separation and Purification Technology, 2018, 203, 178-184.	3.9	17
84	Aqueous biphasic systems in the separation of food colorants. Biochemistry and Molecular Biology Education, 2018, 46, 390-397.	0.5	8
85	Valorization of olive tree leaves: Extraction of oleanolic acid using aqueous solutions of surface-active ionic liquids. Separation and Purification Technology, 2018, 204, 30-37.	3.9	37
86	Separation of phenolic compounds by centrifugal partition chromatography. Green Chemistry, 2018, 20, 1906-1916.	4.6	29
87	Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts. Journal of Chemical Physics, 2018, 148, .	1.2	16
88	Separation of immunoglobulin G using aqueous biphasic systems composed of choliniumâ€based ionic liquids and poly(propylene glycol). Journal of Chemical Technology and Biotechnology, 2018, 93, 1931-1939.	1.6	32
89	An integrated process for enzymatic catalysis allowing product recovery and enzyme reuse by applying thermoreversible aqueous biphasic systems. Green Chemistry, 2018, 20, 1218-1223.	4.6	47
90	Extraction of recombinant proteins from <scp><i>Escherichia coli</i></scp> by cell disruption with aqueous solutions of surfaceâ€active compounds. Journal of Chemical Technology and Biotechnology, 2018, 93, 1864-1870.	1.6	18

#	Article	IF	CITATIONS
91	Deep Eutectic Solvent Aqueous Solutions as Efficient Media for the Solubilization of Hardwood Xylans. ChemSusChem, 2018, 11, 753-762.	3.6	75
92	Potential of aqueous twoâ€phase systems for the separation of levodopa from similar biomolecules. Journal of Chemical Technology and Biotechnology, 2018, 93, 1940-1947.	1.6	10
93	Extraction and recovery processes for cynaropicrin from Cynara cardunculus L. using aqueous solutions of surface-active ionic liquids. Biophysical Reviews, 2018, 10, 915-925.	1.5	18
94	Recovery of carotenoids from brown seaweeds using aqueous solutions of surface-active ionic liquids and anionic surfactants. Separation and Purification Technology, 2018, 196, 300-308.	3.9	37
95	Simultaneous extraction and concentration of water pollution tracers using ionic-liquid-based systems. Journal of Chromatography A, 2018, 1559, 69-77.	1.8	27
96	Evaluation of the effect of ionic liquids as adjuvants in polymer-based aqueous biphasic systems using biomolecules as molecular probes. Separation and Purification Technology, 2018, 196, 244-253.	3.9	35
97	Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohydrate Polymers, 2018, 180, 328-336.	5.1	53
98	Enhanced photocatalytic degradation of psychoactive substances using amine-modified elongated titanate nanostructures. Environmental Science: Nano, 2018, 5, 350-361.	2.2	16
99	Cloud Point Extraction of Chlorophylls from Spinach Leaves Using Aqueous Solutions of Nonionic Surfactants. ACS Sustainable Chemistry and Engineering, 2018, 6, 590-599.	3.2	53
100	Cholinium-Based Good's Buffers Ionic Liquids as Remarkable Stabilizers and Recyclable Preservation Media for Recombinant Small RNAs. ACS Sustainable Chemistry and Engineering, 2018, 6, 16645-16656.	3.2	24
101	Enhanced separation performance of aqueous biphasic systems formed by carbohydrates and tetraalkylphosphonium- or tetraalkylammonium-based ionic liquids. Green Chemistry, 2018, 20, 2978-2983.	4.6	33
102	lonic Liquids in Bioseparation Processes. Advances in Biochemical Engineering/Biotechnology, 2018, 168, 1-29.	0.6	1
103	Glycineâ€betaine ionic liquid analogues as novel phaseâ€forming components of aqueous biphasic systems. Biotechnology Progress, 2018, 34, 1205-1212.	1.3	16
104	Application of Ionic Liquids in Separation and Fractionation Processes. , 2018, , 1-29.		2
105	Effective separation of aromatic and aliphatic amino acid mixtures using ionic-liquid-based aqueous biphasic systems. Green Chemistry, 2017, 19, 1850-1854.	4.6	43
106	Removal of Nonsteroidal Anti-Inflammatory Drugs from Aqueous Environments with Reusable Ionic-Liquid-Based Systems. ACS Sustainable Chemistry and Engineering, 2017, 5, 2428-2436.	3.2	50
107	Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chemical Reviews, 2017, 117, 6984-7052.	23.0	689
108	Good's buffer ionic liquids as relevant phaseâ€forming components of selfâ€buffered aqueous biphasic systems. Journal of Chemical Technology and Biotechnology, 2017, 92, 2287-2299.	1.6	15

#	Article	IF	CITATIONS
109	Enhanced extraction and biological activity of 7-hydroxymatairesinol obtained from Norway spruce knots using aqueous solutions of ionic liquids. Green Chemistry, 2017, 19, 2626-2635.	4.6	30
110	Temperature dependency of aqueous biphasic systems: an alternative approach for exploring the differences between Coulombic-dominated salts and ionic liquids. Chemical Communications, 2017, 53, 7298-7301.	2.2	28
111	Switchable (pH-driven) aqueous biphasic systems formed by ionic liquids as integrated production–separation platforms. Green Chemistry, 2017, 19, 2768-2773.	4.6	31
112	Solvatochromic parameters of deep eutectic solvents formed by ammonium-based salts and carboxylic acids. Fluid Phase Equilibria, 2017, 448, 15-21.	1.4	105
113	Toward an Understanding of the Mechanisms behind the Formation of Liquid–liquid Systems formed by Two Ionic Liquids. Journal of Physical Chemistry Letters, 2017, 8, 3015-3019.	2.1	17
114	A Triple Saltingâ€Out Effect is Required for the Formation of Ionicâ€Liquidâ€Based Aqueous Multiphase Systems. Angewandte Chemie - International Edition, 2017, 56, 15058-15062.	7.2	14
115	Improved monitoring of aqueous samples by the preconcentration of active pharmaceutical ingredients using ionic-liquid-based systems. Green Chemistry, 2017, 19, 4651-4659.	4.6	28
116	Designing the thermal behaviour of aqueous biphasic systems composed of ammonium-based zwitterions. Green Chemistry, 2017, 19, 4012-4016.	4.6	23
117	Aqueous Solutions of Surface-Active Ionic Liquids: Remarkable Alternative Solvents To Improve the Solubility of Triterpenic Acids and Their Extraction from Biomass. ACS Sustainable Chemistry and Engineering, 2017, 5, 7344-7351.	3.2	54
118	Single-step extraction of carotenoids from brown macroalgae using non-ionic surfactants. Separation and Purification Technology, 2017, 172, 268-276.	3.9	34
119	Deep Eutectic Solvents as Efficient Media for the Extraction and Recovery of Cynaropicrin from Cynara cardunculus L. Leaves. International Journal of Molecular Sciences, 2017, 18, 2276.	1.8	35
120	A Triple Saltingâ€Out Effect is Required for the Formation of Ionicâ€Liquidâ€Based Aqueous Multiphase Systems. Angewandte Chemie, 2017, 129, 15254-15258.	1.6	2
121	lonic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds. Green Chemistry, 2016, 18, 4582-4604.	4.6	52
122	Are Aqueous Biphasic Systems Composed of Deep Eutectic Solvents Ternary or Quaternary Systems?. ACS Sustainable Chemistry and Engineering, 2016, 4, 2881-2886.	3.2	177
123	Improving the extraction and purification of immunoglobulin G by the use of ionic liquids as adjuvants in aqueous biphasic systems. Journal of Biotechnology, 2016, 236, 166-175.	1.9	65
124	Introduction to Ionic-Liquid-Based Aqueous Biphasic Systems (ABS). Green Chemistry and Sustainable Technology, 2016, , 1-25.	0.4	6
125	Novel one-pot synthesis and sensitisation of new BiOCl–Bi ₂ S ₃ nanostructures from DES medium displaying high photocatalytic activity. RSC Advances, 2016, 6, 77329-77339.	1.7	21
126	Suitability of bio-based ionic liquids for the extraction and purification of IgG antibodies. Green Chemistry, 2016, 18, 6071-6081.	4.6	74

#	Article	IF	CITATIONS
127	Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems. Scientific Reports, 2016, 6, 20276.	1.6	72
128	Influence of Nanosegregation on the Surface Tension of Fluorinated Ionic Liquids. Langmuir, 2016, 32, 6130-6139.	1.6	38
129	Solubility and solvation of monosaccharides in ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 19722-19730.	1.3	18
130	Aqueous biphasic systems composed of ionic liquids and polypropylene glycol: insights into their liquid–liquid demixing mechanisms. Physical Chemistry Chemical Physics, 2016, 18, 20571-20582.	1.3	51
131	Densities, viscosities and derived thermophysical properties of water-saturated imidazolium-based ionic liquids. Fluid Phase Equilibria, 2016, 407, 188-196.	1.4	67
132	Improved extraction of fluoroquinolones with recyclable ionic-liquid-based aqueous biphasic systems. Green Chemistry, 2016, 18, 2717-2725.	4.6	25
133	Structural insights into the effect of cholinium-based ionic liquids on the critical micellization temperature of aqueous triblock copolymers. Physical Chemistry Chemical Physics, 2016, 18, 8342-8351.	1.3	32
134	Alkaloids as Alternative Probes To Characterize the Relative Hydrophobicity of Aqueous Biphasic Systems. ACS Sustainable Chemistry and Engineering, 2016, 4, 1512-1520.	3.2	48
135	Single-step purification of ovalbumin from egg white using aqueous biphasic systems. Process Biochemistry, 2016, 51, 781-791.	1.8	42
136	Surface tensions of ionic liquids: Non-regular trend along the number of cyano groups. Fluid Phase Equilibria, 2016, 409, 458-465.	1.4	24
137	Enhanced tunability afforded by aqueous biphasic systems formed by fluorinated ionic liquids and carbohydrates. Green Chemistry, 2016, 18, 1070-1079.	4.6	37
138	The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes. Green Chemistry, 2015, 17, 3948-3963.	4.6	156
139	Novel Biocompatible and Selfâ€buffering Ionic Liquids for Biopharmaceutical Applications. Chemistry - A European Journal, 2015, 21, 4781-4788.	1.7	96
140	One-step extraction and concentration of estrogens for an adequate monitoring of wastewater using ionic-liquid-based aqueous biphasic systems. Green Chemistry, 2015, 17, 2570-2579.	4.6	46
141	Effect of the Methylation and N–H Acidic Group on the Physicochemical Properties of Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 8781-8792.	1.2	23
142	Enhanced extraction of proteins using choliniumâ€based ionic liquids as phaseâ€forming components of aqueous biphasic systems. Biotechnology Journal, 2015, 10, 1457-1466.	1.8	92
143	Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good's buffers ionic liquids. Process Biochemistry, 2015, 50, 1158-1166.	1.8	65
144	Enhanced extraction of bovine serum albumin with aqueous biphasic systems of phosphonium- and ammonium-based ionic liquids. Journal of Biotechnology, 2015, 206, 17-25.	1.9	75

#	Article	IF	CITATIONS
145	Good's buffers as novel phase-forming components of ionic-liquid-based aqueous biphasic systems. Biochemical Engineering Journal, 2015, 101, 142-149.	1.8	22
146	Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilibria, 2015, 400, 103-113.	1.4	67
147	Aqueous Biphasic Systems Composed of Ionic Liquids and Acetate-Based Salts: Phase Diagrams, Densities, and Viscosities. Journal of Chemical & Engineering Data, 2015, 60, 1674-1682.	1.0	36
148	Controlling the Formation of Ionicâ€Liquidâ€based Aqueous Biphasic Systems by Changing the Hydrogenâ€Bonding Ability of Polyethylene Glycol End Groups. ChemPhysChem, 2015, 16, 2219-2225.	1.0	41
149	Contact angles and wettability of ionic liquids on polar and non-polar surfaces. Physical Chemistry Chemical Physics, 2015, 17, 31653-31661.	1.3	77
150	Enhancing the Antioxidant Characteristics of Phenolic Acids by Their Conversion into Cholinium Salts. ACS Sustainable Chemistry and Engineering, 2015, 3, 2558-2565.	3.2	54
151	Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory. Physical Chemistry Chemical Physics, 2015, 17, 32044-32052.	1.3	22
152	Ionic liquids as additives to enhance the extraction of antioxidants in aqueous two-phase systems. Separation and Purification Technology, 2014, 128, 1-10.	3.9	116
153	Vapor–Liquid Equilibria of Water + Alkylimidazolium-Based Ionic Liquids: Measurements and Perturbed-Chain Statistical Associating Fluid Theory Modeling. Industrial & Engineering Chemistry Research, 2014, 53, 3737-3748.	1.8	82
154	Good's buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research. Green Chemistry, 2014, 16, 3149-3159.	4.6	94
155	Development of back-extraction and recyclability routes for ionic-liquid-based aqueous two-phase systems. Green Chemistry, 2014, 16, 259-268.	4.6	89
156	Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chemistry, 2014, 16, 4786-4815.	4.6	357
157	Molecular interactions in aqueous biphasic systems composed of polyethylene glycol and crystalline vs. liquid cholinium-based salts. Physical Chemistry Chemical Physics, 2014, 16, 5723.	1.3	90
158	Evidence for the Interactions Occurring Between Ionic Liquids and Tetraethylene Glycol in Binary Mixtures and Aqueous Biphasic Systems. Journal of Physical Chemistry B, 2014, 118, 4615-4629.	1.2	18
159	Extraction of tetracycline from fermentation broth using aqueous two-phase systems composed of polyethylene glycol and cholinium-based salts. Process Biochemistry, 2013, 48, 716-722.	1.8	101
160	Aqueous biphasic systems: a benign route using cholinium-based ionic liquids. RSC Advances, 2013, 3, 1835-1843.	1.7	138
161	Enhanced extraction of caffeine from guaraná seeds using aqueous solutions of ionic liquids. Green Chemistry, 2013, 15, 2002.	4.6	127
162	Cellulose/iron oxide hybrids as multifunctional pigments in thermoplastic starch based materials. Cellulose, 2013, 20, 861-871.	2.4	6

#	Article	IF	CITATIONS
163	Eco-Friendly Hybrid Pigments Made of Cellulose and Iron Oxides. Journal of Nanoscience and Nanotechnology, 2012, 12, 6817-6821.	0.9	4
164	Optimization of the gallic acid extraction using ionic-liquid-based aqueous two-phase systems. Separation and Purification Technology, 2012, 97, 142-149.	3.9	108
165	Growth and Chemical Stability of Copper Nanostructures on Cellulosic Fibers. European Journal of Inorganic Chemistry, 2012, 2012, 5043-5049.	1.0	37
166	Aqueous biphasic systems: a boost brought about by using ionic liquids. Chemical Society Reviews, 2012, 41, 4966.	18.7	726
167	Influence of the sodium/proton replacement on the structural, morphological and photocatalytic properties of titanate nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 232, 50-56.	2.0	52
168	Evaluation of Cationâ^'Anion Interaction Strength in Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 4033-4041.	1.2	227
169	Influence of calcination parameters on the TiO2 photocatalytic properties. Materials Chemistry and Physics, 2011, 125, 20-25.	2.0	83
170	Extraction of vanillin using ionic-liquid-based aqueous two-phase systems. Separation and Purification Technology, 2010, 75, 39-47.	3.9	180
171	Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites. Journal of Hazardous Materials, 2009, 161, 545-550.	6.5	187
172	Photosensitization of TiO2 by Ag2S and its catalytic activity on phenol photodegradation. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 204, 168-173.	2.0	107
173	Anti-fungal activity of SiO2/Ag2S nanocomposites against Aspergillus niger. Colloids and Surfaces B: Biointerfaces, 2009, 74, 304-308.	2.5	29
174	From Single-Molecule Precursors to Coupled Ag2S/TiO2Nanocomposites. European Journal of Inorganic Chemistry, 2008, 2008, 4380-4386.	1.0	27
175	Adsorption and catalytic properties of SiO2/Bi2S3 nanocomposites on the methylene blue photodecolorization process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 328, 107-113.	2.3	36
176	Photoluminescent, transparent and flexible di-ureasil hybrids containing CdSe/ZnS quantum dots. Nanotechnology, 2008, 19, 155601.	1.3	35
177	Biofunctionalized ferromagnetic CoPt3/polymer nanocomposites. Nanotechnology, 2007, 18, 215609.	1.3	18
178	Layer-by-Layer Deposition of Organically Capped Quantum Dots. Materials Science Forum, 2006, 514-516, 1111-1115.	0.3	10
179	Size and Shape-Tuned Overgrowth on Au Nanorods Regulated by Polyallylamine. Journal of Nanoscience and Nanotechnology, 2006, 6, 3373-3375.	0.9	3
180	Controlled Synthesis of Morphological Well-Defined BiVO ₄ Pigment Particles Supported on Glass Substrates. Materials Science Forum, 2006, 514-516, 1211-1215.	0.3	1

#	Article	IF	CITATIONS
181	Growth of cadmium selenide nanocrystals on submicron silica. Journal of Crystal Growth, 2005, 279, 433-438.	0.7	9
182	Photoluminescence of zinc oxide supported on submicron silica particles. Materials Science and Engineering C, 2005, 25, 654-657.	3.8	6
183	Growth of BiVO4 particles in cellulosic fibres by in situ reaction. Dyes and Pigments, 2005, 65, 125-127.	2.0	39
184	Zinc Sulfide Nanocoating of Silica Submicron Spheres Using a Single-source Method. Journal of Nanoscience and Nanotechnology, 2004, 4, 146-150.	0.9	20
185	Preparation of hollow shells of zinc oxide/bismuth(III) vanadate. Materials Research Bulletin, 2003, 38, 1013-1020.	2.7	6
186	Synthesis and assembly of SiO2-coated Bi2S3 nanofibers. Journal of Colloid and Interface Science, 2003, 264, 391-395.	5.0	11
187	The first dinuclear zinc(II) dithiocarbamate complex with butyl substituent groups. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m1067-m1069.	0.2	7
188	Chemical bath deposition of cerium doped BiVO4. Dyes and Pigments, 2003, 59, 181-184.	2.0	41
189	Deposition/Detachment of Particles on Plasma Treated Polymer Surfaces. Materials Science Forum, 2003, 426-432, 2533-2538.	0.3	14
190	Chemical bath deposition of BiVO4. Thin Solid Films, 2002, 406, 93-97.	0.8	89
191	Langmuir–Blodgett manipulation of capped cadmium sulfide quantum dots. Thin Solid Films, 2001, 389, 272-277.	0.8	17
192	Synthetic hollow zinc oxide microparticles. Materials Research Bulletin, 2001, 36, 1099-1108.	2.7	60
193	Preparation and optical properties of CdSe/polymer nanocomposites. Scripta Materialia, 2000, 43, 567-571.	2.6	34