Yu Lan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/292448/publications.pdf Version: 2024-02-01

νιιταν

#	Article	IF	CITATIONS
1	Alx1 Deficient Mice Recapitulate Craniofacial Phenotype and Reveal Developmental Basis of ALX1-Related Frontonasal Dysplasia. Frontiers in Cell and Developmental Biology, 2022, 10, 777887.	3.7	11
2	Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis. Current Topics in Developmental Biology, 2022, 148, 13-50.	2.2	3
3	Tissueâ€specific analysis of Fgf18 gene function in palate development. Developmental Dynamics, 2021, 250, 562-573.	1.8	7
4	Cis-Repression of Foxq1 Expression Affects Foxf2-Mediated Gene Expression in Palate Development. Frontiers in Cell and Developmental Biology, 2021, 9, 665109.	3.7	1
5	The Scleraxis Transcription Factor Directly Regulates Multiple Distinct Molecular and Cellular Processes During Early Tendon Cell Differentiation. Frontiers in Cell and Developmental Biology, 2021, 9, 654397.	3.7	14
6	Generation and characterization of Six2 conditional mice. Genesis, 2020, 58, e23365.	1.6	1
7	Hedgehog signaling patterns the oral-aboral axis of the mandibular arch. ELife, 2019, 8, .	6.0	53
8	Golga5 is dispensable for mouse embryonic development and postnatal survival. Genesis, 2017, 55, e23039.	1.6	30
9	Osr1 Interacts Synergistically with Wt1 to Regulate Kidney Organogenesis. PLoS ONE, 2016, 11, e0159597.	2.5	15
10	Golgb1 regulates protein glycosylation and is crucial for mammalian palate development. Development (Cambridge), 2016, 143, 2344-55.	2.5	69
11	Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists. Developmental Biology, 2016, 420, 110-119.	2.0	52
12	A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development. PLoS Genetics, 2016, 12, e1005769.	3.5	72
13	Cellular and Molecular Mechanisms of Palatogenesis. Current Topics in Developmental Biology, 2015, 115, 59-84.	2.2	90
14	Osr1 acts downstream of and interacts synergistically with Six2 to maintain nephron progenitor cells during kidney organogenesis. Development (Cambridge), 2014, 141, 1442-1452.	2.5	79
15	Molecular patterning of the mammalian dentition. Seminars in Cell and Developmental Biology, 2014, 25-26, 61-70.	5.0	106
16	Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis. Development (Cambridge), 2013, 140, 4709-4718.	2.5	82
17	Odd-skipped related-1 controls neural crest chondrogenesis during tongue development. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18555-18560.	7.1	31
18	Bmpr1a signaling plays critical roles in palatal shelf growth and palatal bone formation. Developmental Biology, 2011, 350, 520-531.	2.0	89

Yu Lan

#	Article	IF	CITATIONS
19	Osr2 acts downstream of Pax9 and interacts with both Msx1 and Pax9 to pattern the tooth developmental field. Developmental Biology, 2011, 353, 344-353.	2.0	41
20	Generation of <i>Osr1</i> conditional mutant mice. Genesis, 2011, 49, 419-422.	1.6	23
21	Sonic hedgehog signaling regulates reciprocal epithelial-mesenchymal interactions controlling palatal outgrowth. Development (Cambridge), 2009, 136, 1387-1396.	2.5	136
22	The Mn1 transcription factor acts upstream of <i>Tbx22</i> and preferentially regulates posterior palate growth in mice. Development (Cambridge), 2008, 135, 3959-3968.	2.5	63
23	A unique mouse strain expressing Cre recombinase for tissueâ€specific analysis of gene function in palate and kidney development. Genesis, 2007, 45, 618-624.	1.6	53
24	Expression ofWnt9b and activation of canonical Wnt signaling during midfacial morphogenesis in mice. Developmental Dynamics, 2006, 235, 1448-1454.	1.8	111
25	Jag2-Notch1 signaling regulates oral epithelial differentiation and palate development. Developmental Dynamics, 2006, 235, 1830-1844.	1.8	93
26	Odd-skipped related 1 (Odd1) is an essential regulator of heart and urogenital development. Developmental Biology, 2005, 288, 582-594.	2.0	191
27	Odd-skipped related 2 (<i>Osr2</i>) encodes a key intrinsic regulator of secondary palate growth and morphogenesis. Development (Cambridge), 2004, 131, 3207-3216.	2.5	139
28	Osr2, a new mouse gene related to Drosophila odd-skipped, exhibits dynamic expression patterns during craniofacial, limb, and kidney development. Mechanisms of Development, 2001, 107, 175-179.	1.7	87
29	The Mouse Snail Gene Encodes a Key Regulator of the Epithelial-Mesenchymal Transition. Molecular and Cellular Biology, 2001, 21, 8184-8188.	2.3	565
30	The slug gene is not essential for mesoderm or neural crest development in mice. Developmental Biology, 1998, 198, 277-285.	2.0	228