Andrea Paparini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2924441/publications.pdf Version: 2024-02-01

ANDREA DADADINI

#	Article	IF	CITATIONS
1	Population structure and genetic diversity of Trichomonas vaginalis clinical isolates in Australia and Ghana. Infection, Genetics and Evolution, 2020, 82, 104318.	1.0	5
2	Establishment of Coral-Bacteria Symbioses Reveal Changes in the Core Bacterial Community With Host Ontogeny. Frontiers in Microbiology, 2019, 10, 1529.	1.5	50
3	No evidence for widespread <i>Babesia microti</i> transmission in Australia. Transfusion, 2019, 59, 2368-2374.	0.8	8
4	ldentification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. Water Research, 2019, 158, 301-312.	5.3	41
5	Evaluation of 16S next-generation sequencing of hypervariable region 4 in wastewater samples: An unsuitable approach for bacterial enteric pathogen identification. Science of the Total Environment, 2019, 670, 1111-1124.	3.9	44
6	Identification of Theileria fuliginosa-like species in Ixodes australiensis ticks from western grey kangaroos (Macropus fuliginosus) in Western Australia. Ticks and Tick-borne Diseases, 2018, 9, 632-637.	1.1	6
7	A novel Ehrlichia species in blood and Ixodes ornithorhynchi ticks from platypuses (Ornithorhynchus) Tj ETQq1	1 0.784314 1.1	ł rgBT /Overlc
8	Direct oxygen uptake from air by novel glycogen accumulating organism dominated biofilm minimizes excess sludge production. Science of the Total Environment, 2018, 640-641, 80-88.	3.9	11
9	An Australian dog diagnosed with an exotic tick-borne infection: should Australia still be considered free from Hepatozoon canis?. International Journal for Parasitology, 2018, 48, 805-815.	1.3	10
10	Recent insights into the tick microbiome gained through next-generation sequencing. Parasites and Vectors, 2018, 11, 12.	1.0	146
11	Prevalence, genetic diversity and potential clinical impact of blood-borne and enteric protozoan parasites in native mammals from northern Australia. Veterinary Parasitology, 2017, 238, 94-105.	0.7	18
12	Next Generation Sequencing uncovers within-host differences in the genetic diversity of Cryptosporidium gp60 subtypes. International Journal for Parasitology, 2017, 47, 601-607.	1.3	38
13	Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake. Bioresource Technology, 2017, 228, 1-8.	4.8	24
14	New Technologies for Detection of Enteric Parasites. Trends in Parasitology, 2017, 33, 532-546.	1.5	94
15	<i>Cryptosporidium</i> in fish: alternative sequencing approaches and analyses at multiple loci to resolve mixed infections. Parasitology, 2017, 144, 1811-1820.	0.7	21
16	Novel Primer Sets for Next Generation Sequencing-Based Analyses of Water Quality. PLoS ONE, 2017, 12, e0170008.	1.1	8
17	Increased genetic diversity and prevalence of co-infection with Trypanosoma spp. in koalas (Phascolarctos cinereus) and their ticks identified using next-generation sequencing (NGS). PLoS ONE, 2017, 12, e0181279.	1.1	41
18	It's official – Cryptosporidium is a gregarine: What are the implications for the water industry?. Water Research, 2016, 105, 305-313.	5.3	110

#	Article	IF	CITATIONS
19	Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. International Journal for Parasitology: Parasites and Wildlife, 2016, 5, 88-109.	0.6	142
20	Molecular characterization of native Australian trypanosomes in quokka (Setonix brachyurus) populations from Western Australia. Parasitology International, 2016, 65, 205-208.	0.6	4
21	First report of Trypanosoma vegrandis in koalas (Phascolarctos cinereus). Parasitology International, 2016, 65, 316-318.	0.6	10
22	Zoonotic Cryptosporidium Species in Animals Inhabiting Sydney Water Catchments. PLoS ONE, 2016, 11, e0168169.	1.1	47
23	A simple method to test the reproducibility of the phylogenetic reconstructions: the molecular systematics of cyanobacteria as a case study. Fottea, 2016, 16, 209-217.	0.4	Ο
24	Inhibition of the endosymbiont "Candidatus Midichloria mitochondrii―during 16S rRNA gene profiling reveals potential pathogens in Ixodes ticks from Australia. Parasites and Vectors, 2015, 8, 345.	1.0	95
25	Theileria annae (syn. Babesia microti-like) infection in dogs in NW Spain detected using direct and indirect diagnostic techniques: clinical report of 75 cases. Parasites and Vectors, 2015, 8, 217.	1.0	48
26	First Molecular Characterization of Theileria ornithorhynchi Mackerras, 1959: yet Another Challenge to the Systematics of the Piroplasms. Protist, 2015, 166, 609-620.	0.6	18
27	Cryptosporidium huwi n. sp. (Apicomplexa: Eimeriidae) from the guppy (Poecilia reticulata). Experimental Parasitology, 2015, 150, 31-35.	0.5	64
28	Comparison of Sanger and next generation sequencing performance for genotyping Cryptosporidium isolates at the 18S rRNA and actin loci. Experimental Parasitology, 2015, 151-152, 21-27.	0.5	32
29	Genetic diversity of Cryptosporidium in fish at the 18S and actin loci and high levels of mixed infections. Veterinary Parasitology, 2015, 214, 255-263.	0.7	29
30	Bacterial Profiling Reveals Novel "Ca. Neoehrlichiaâ€, Ehrlichia, and Anaplasma Species in Australian Human-Biting Ticks. PLoS ONE, 2015, 10, e0145449.	1.1	58
31	Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. International Journal for Parasitology, 2014, 44, 1105-1113.	1.3	152
32	Novel genotypes of Trypanosoma binneyi from wild platypuses (Ornithorhynchus anatinus) and identification of a leech as a potential vector. Experimental Parasitology, 2014, 145, 42-50.	0.5	26
33	Piroplasms of New Zealand seabirds. Parasitology Research, 2014, 113, 4407-4414.	0.6	20
34	Molecular confirmation of the first autochthonous case of human babesiosis in Australia using a novel primer set for the beta-tubulin gene. Experimental Parasitology, 2014, 141, 93-97.	0.5	19
35	Polyphasic identification of cyanobacterial isolates from Australia. Water Research, 2014, 59, 248-261.	5.3	27
36	Multiple Cryptosporidium genotypes detected in wild black rats (Rattus rattus) from northern Australia. Experimental Parasitology, 2012, 131, 404-412.	0.5	31

ANDREA PAPARINI

#	Article	IF	CITATIONS
37	First report of human babesiosis in Australia. Medical Journal of Australia, 2012, 196, 350-352.	0.8	61
38	Identification of novel Babesia and Theileria genotypes in the endangered marsupials, the woylie (Bettongia penicillata ogilbyi) and boodie (Bettongia lesueur). Experimental Parasitology, 2012, 131, 25-30.	0.5	38
39	Identification of novel trypanosome genotypes in native Australian marsupials. Veterinary Parasitology, 2011, 183, 21-30.	0.7	36
40	ACTN3 Genotyping by Real-Time PCR in the Italian Population and Athletes. Medicine and Science in Sports and Exercise, 2007, 39, 810-815.	0.2	46
41	Swimming pools and fungi: An environmental epidemiology survey in Italian indoor swimming facilities. International Journal of Environmental Health Research, 2007, 17, 197-206.	1.3	40
42	Gene Transfer and Cauliflower Mosaic Virus Promoter 35S Activity in Mammalian Cells. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2006, 41, 437-449.	0.7	8
43	Public health issues related with the consumption of food obtained from genetically modified organisms. Biotechnology Annual Review, 2004, 10, 85-122.	2.1	31