List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2924381/publications.pdf Version: 2024-02-01

FELCO RUUTER

#	Article	IF	CITATIONS
1	Synthesis of Diverse Heterocyclic Scaffolds by (3+3) and (3+4) Cycloannulations of Donorâ€Acceptor Vinylcyclopropanes. Advanced Synthesis and Catalysis, 2022, 364, 53-57.	4.3	6
2	Transition metal-catalysed carbene- and nitrene transfer to carbon monoxide and isocyanides. Chemical Society Reviews, 2022, 51, 5842-5877.	38.1	23
3	Synthesis of Carbazoles by a Diverted Bischler–Napieralski Cascade Reaction. Organic Letters, 2021, 23, 3100-3104.	4.6	16
4	Palladiumâ€Catalyzed Cascade to Benzoxepins by Using Vinylâ€Substituted Donor–Acceptor Cyclopropanes. Angewandte Chemie - International Edition, 2021, 60, 14410-14414.	13.8	36
5	Palladiumâ€Catalyzed Cascade to Benzoxepins by Using Vinylâ€Substituted Donor–Acceptor Cyclopropanes. Angewandte Chemie, 2021, 133, 14531-14535.	2.0	6
6	Synthesis of Carbazoles and Dihydrocarbazoles by a Divergent Cascade Reaction of Donor–Acceptor Cyclopropanes. Organic Letters, 2021, 23, 7592-7596.	4.6	10
7	Synthesis of tetracyclic spiroindolines by an interrupted Bischler–Napieralski reaction: total synthesis of akuammicine. Organic and Biomolecular Chemistry, 2021, 19, 9641-9644.	2.8	2
8	Base Metal Catalyzed Isocyanide Insertions. Angewandte Chemie - International Edition, 2020, 59, 540-558.	13.8	99
9	Base Metal Catalyzed Isocyanide Insertions. Angewandte Chemie, 2020, 132, 548-566.	2.0	20
10	Zinc(<scp>ii</scp>)-mediated diastereoselective Passerini reactions of biocatalytically desymmetrised renewable inputs. Organic Chemistry Frontiers, 2020, 7, 380-398.	4.5	14
11	Recent Advances in Palladium-Catalyzed Isocyanide Insertions. Molecules, 2020, 25, 4906.	3.8	42
12	Synthesis of Quinazolin-4-ones by Copper-Catalyzed Isocyanide Insertion. Journal of Organic Chemistry, 2020, 85, 7378-7385.	3.2	18
13	Diastereoselective Synthesis of β-Lactams by Ligand-Controlled Stereodivergent Intramolecular Tsuji–Trost Allylation. Journal of Organic Chemistry, 2020, 85, 9566-9584.	3.2	13
14	Synthesis of Densely Functionalized Pyrimidouracils by Nickel(II)-Catalyzed Isocyanide Insertion. Organic Letters, 2020, 22, 914-919.	4.6	18
15	Frontispiece: Total Synthesis of <i>Aspidosperma</i> and <i>Strychnos</i> Alkaloids through Indole Dearomatization. Chemistry - A European Journal, 2019, 25, .	3.3	1
16	Catalytic Asymmetric Synthesis of Diketopiperazines by Intramolecular Tsuji–Trost Allylation. Journal of Organic Chemistry, 2019, 84, 12058-12070.	3.2	18
17	Efficient Diastereoselective Threeâ€Component Synthesis of Pipecolic Amides. European Journal of Organic Chemistry, 2019, 2019, 5313-5325.	2.4	11
18	Total Synthesis of <i>Aspidosperma</i> and <i>Strychnos</i> Alkaloids through Indole Dearomatization. Chemistry - A European Journal, 2019, 25, 8916-8935.	3.3	106

#	Article	IF	CITATIONS
19	Mild and Practical Indole C2 Allylation by Allylboration of in situ Generated 3-Chloroindolenines. European Journal of Organic Chemistry, 2019, 2019, 5156-5160.	2.4	4
20	Stereoselective Chemoenzymatic Cascade Synthesis of the <i>bis</i> â€THF Core of Acetogenins. European Journal of Organic Chemistry, 2019, 2019, 1092-1101.	2.4	3
21	Modular Three-Component Synthesis of 4-Aminoquinolines via an Imidoylative Sonogashira/Cyclization Cascade. Journal of Organic Chemistry, 2018, 83, 854-861.	3.2	28
22	Sequential Multicomponent Strategy for the Diastereoselective Synthesis of Densely Functionalized Spirooxindole-Fused Thiazolidines. ACS Combinatorial Science, 2018, 20, 98-105.	3.8	22
23	Integrative Theory/Experimentâ€Driven Exploration of a Multicomponent Reaction towards Imidazolineâ€2â€(thi)ones. European Journal of Organic Chemistry, 2018, 2018, 104-112.	2.4	2
24	Multicomponent reactions in drug discovery and medicinal chemistry. Drug Discovery Today: Technologies, 2018, 29, 1-2.	4.0	23
25	Enantioselective Bioâ€Hydrolysis of Geranylâ€Derived racâ€Epoxides: A Chemoenzymatic Route to transâ€Furanoid Linalool Oxide. Advanced Synthesis and Catalysis, 2018, 361, 813.	4.3	6
26	lodospirocyclization of Tryptamineâ€Derived Isocyanides: Formal Total Synthesis of Aspidofractinine. Angewandte Chemie, 2018, 130, 15452-15456.	2.0	15
27	lodospirocyclization of Tryptamineâ€Derived Isocyanides: Formal Total Synthesis of Aspidofractinine. Angewandte Chemie - International Edition, 2018, 57, 15232-15236.	13.8	55
28	Stereoselective Synthesis of Fused Vinylcyclopropanes by Intramolecular Tsuji–Trost Cascade Cyclization. Organic Letters, 2018, 20, 6611-6615.	4.6	21
29	Synthesis of Secondary Amides from Thiocarbamates. Organic Letters, 2018, 20, 4235-4239.	4.6	15
30	Advances in Palladium atalyzed Cascade Cyclizations. Advanced Synthesis and Catalysis, 2018, 360, 3821-3871.	4.3	72
31	Hexafluoroisopropanol as the Acid Component in the Passerini Reaction: One-Pot Access to β-Amino Alcohols. Organic Letters, 2018, 20, 3988-3991.	4.6	30
32	Ugi Four-Center Three-Component Reaction as a Direct Approach to Racetams. Synthesis, 2017, 49, 1664-1674.	2.3	12
33	Stereoselective Synthesis of Functionalized Bicyclic Scaffolds by Passerini 3 enterâ€2 omponent Reactions of Cyclic Ketoacids. European Journal of Organic Chemistry, 2017, 2017, 1262-1271.	2.4	18
34	Copper(<scp>i</scp>) catalyzed oxidative hydrolysis of Ugi 3-component and Ugi-azide reaction products towards 2° α-ketoamides and α-ketotetrazoles. Organic and Biomolecular Chemistry, 2017, 15, 6132-6135.	2.8	16
35	Biocatalytic access to nonracemic γ-oxo esters via stereoselective reduction using ene-reductases. Green Chemistry, 2017, 19, 511-518.	9.0	41
36	Ugi-Type Reactions of Spirocyclic Indolenines as a Platform for Compound Library Generation. Synlett, 2017, 28, 376-380.	1.8	15

#	Article	IF	CITATIONS
37		3.8	1
38	BrÃˌnsted Acid-Catalyzed Cyanotritylation of Aldehydes by Trityl Isocyanide. Organic Letters, 2016, 18, 3562-3565.	4.6	15
39	Stereoselective Monoamine Oxidaseâ€Catalyzed Oxidative Azaâ€Friedel–Crafts Reactions of <i>meso</i> â€Pyrrolidines in Aqueous Buffer. Advanced Synthesis and Catalysis, 2016, 358, 1555-1560.	4.3	17
40	Synthesis of polycyclic spiroindolines by highly diastereoselective interrupted Ugi cascade reactions of 3-(2-isocyanoethyl)indoles. Chemical Communications, 2016, 52, 12482-12485.	4.1	53
41	Metal-free one-pot α-carboxylation of primary alcohols. Organic and Biomolecular Chemistry, 2016, 14, 9716-9719.	2.8	2
42	Synthesis, characterization and biological activity of fluorescently labeled bedaquiline analogues. RSC Advances, 2016, 6, 108708-108716.	3.6	8
43	lodide-Catalyzed Synthesis of Secondary Thiocarbamates from Isocyanides and Thiosulfonates. Organic Letters, 2016, 18, 2808-2811.	4.6	81
44	Trityl Isocyanide as a Mechanistic Probe in Multicomponent Chemistry: Walking the Line between Ugi― and Streckerâ€ŧype Reactions. Chemistry - A European Journal, 2016, 22, 7837-7842.	3.3	31
45	2-Bromo-6-isocyanopyridine as a Universal Convertible Isocyanide for Multicomponent Chemistry. Organic Letters, 2016, 18, 984-987.	4.6	46
46	Asymmetric Synthesis of Tetracyclic Pyrroloindolines and Constrained Tryptamines by a Switchable Cascade Reaction. Angewandte Chemie - International Edition, 2015, 54, 14133-14136.	13.8	25
47	Oneâ€Pot Synthesis of Nâ€Substituted βâ€Amino Alcohols from Aldehydes and Isocyanides. Chemistry - A European Journal, 2015, 21, 7808-7813.	3.3	10
48	Synthesis of Heterocycles by Formal Cycloadditions of Isocyanides. Chemistry - an Asian Journal, 2015, 10, 508-520.	3.3	49
49	Stereoselective synthesis of fluorinated aminoglycosyl phosphonates. Organic and Biomolecular Chemistry, 2015, 13, 1317-1321.	2.8	15
50	Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein Journal of Organic Chemistry, 2014, 10, 544-598.	2.2	228
51	Sustainable Three omponent Synthesis of Isothioureas from Isocyanides, Thiosulfonates, and Amines. Angewandte Chemie, 2014, 126, 13063-13068.	2.0	25
52	Synthesis and Photophysics of a Red-Light Absorbing Supramolecular Chromophore System. Chemistry - A European Journal, 2014, 20, 10185-10185.	3.3	0
53	Synthesis of Diverse Azolo[<i>c</i>]quinazolines by Palladium(II)―Catalyzed Aerobic Oxidative Insertion of Isocyanides. Advanced Synthesis and Catalysis, 2014, 356, 1205-1209.	4.3	26
54	Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chemistry, 2014, 16, 2958-2975.	9.0	989

#	Article	IF	CITATIONS
55	Synthesis of Pyridopyrimidines by Palladium-Catalyzed Isocyanide Insertion. ACS Catalysis, 2014, 4, 40-43.	11.2	49
56	Diastereoselective One-Pot Synthesis of Tetrafunctionalized 2-Imidazolines. Journal of Organic Chemistry, 2014, 79, 5219-5226.	3.2	7
57	Sustainable Threeâ€Component Synthesis of Isothioureas from Isocyanides, Thiosulfonates, and Amines. Angewandte Chemie - International Edition, 2014, 53, 12849-12854.	13.8	94
58	Chemoselective Addition of Isocyanides toN-tert-Butanesulfinimines. Organic Letters, 2014, 16, 5116-5119.	4.6	5
59	Synthesis and Photophysics of a Redâ€Light Absorbing Supramolecular Chromophore System. Chemistry - A European Journal, 2014, 20, 10285-10291.	3.3	17
60	Stereoselective Synthesis of βâ€Sulfinylamino Isocyanides and 2â€Imidazolines. European Journal of Organic Chemistry, 2014, 2014, 3762-3766.	2.4	6
61	Synthesis of 4-aminoquinolines by aerobic oxidative palladium-catalyzed double C–H activation and isocyanide insertion. Chemistry of Heterocyclic Compounds, 2013, 49, 902-908.	1.2	18
62	Palladium-Catalyzed Synthesis of 2-Aminobenzoxazinones by Aerobic Oxidative Coupling of Anthranilic Acids and Isocyanides. Journal of Organic Chemistry, 2013, 78, 10469-10475.	3.2	35
63	Multicomponent reactions – opportunities for the pharmaceutical industry. Drug Discovery Today: Technologies, 2013, 10, e15-e20.	4.0	149
64	Multicomponent Synthesis of 4-Aminophthalazin-1(2 <i>H</i>)-ones by Palladium-Catalyzed Isocyanide Insertion. Journal of Organic Chemistry, 2013, 78, 6735-6745.	3.2	47
65	Palladiumâ€Catalyzed Migratory Insertion of Isocyanides: An Emerging Platform in Cross oupling Chemistry. Angewandte Chemie - International Edition, 2013, 52, 7084-7097.	13.8	381
66	Efficiency, Diversity, and Complexity with Multicomponent Reactions. Synlett, 2013, 24, 666-685.	1.8	64
67	Synthesis of Imidazolidine-2-(thi)ones via C2-Selective Oxidation and Thionation of 2-Imidazolinium Halides. Synlett, 2012, 2012, 80-84.	1.8	3
68	Recent Advances in Transition-Metal-Catalyzed [2+2+2]-Cyclo(co)trimerization Reactions. Synthesis, 2012, 44, 2639-2672.	2.3	188
69	Sustainable Synthesis of Diverse Privileged Heterocycles by Palladium atalyzed Aerobic Oxidative Isocyanide Insertion. Angewandte Chemie - International Edition, 2012, 51, 13058-13061.	13.8	158
70	Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3, 1189.	3.4	403
71	Multicomponent Synthesis of 3,6-Dihydro-2H-1,3-thiazine-2-thiones. Molecules, 2012, 17, 1675-1685.	3.8	18
72	Stereoselective synthesis of N-aryl proline amides by biotransformation–Ugi-Smiles sequence. Organic and Biomolecular Chemistry, 2012, 10, 941-944.	2.8	31

#	Article	IF	CITATIONS
73	Recent developments in asymmetric multicomponent reactions. Chemical Society Reviews, 2012, 41, 3969.	38.1	775
74	Concise Synthesis of Highly Substituted Benzo[<i>a</i>]quinolizines by a Multicomponent Reaction/Allylation/Heck Reaction Sequence. European Journal of Organic Chemistry, 2012, 2012, 275-280.	2.4	17
75	Palladium-Catalyzed Synthesis of 4-Aminophthalazin-1(2 <i>H</i>)-ones by Isocyanide Insertion. Organic Letters, 2011, 13, 6496-6499.	4.6	119
76	A Microwave-Assisted Diastereoselective Multicomponent Reaction To Access Dibenzo[<i>c</i> , <i>e</i>]azepinones: Synthesis and Biological Evaluation. Journal of Organic Chemistry, 2011, 76, 2828-2839.	3.2	77
77	Recent Advances in Palladium atalyzed Cascade Cyclizations. Advanced Synthesis and Catalysis, 2011, 353, 809-841.	4.3	244
78	Multicomponent Reaction Design in the Quest for Molecular Complexity and Diversity. Angewandte Chemie - International Edition, 2011, 50, 6234-6246.	13.8	1,133
79	Synthesis of 4â€Aminoquinazolines by Palladiumâ€Catalyzed Intramolecular Imidoylation of <i>N</i> â€{2â€Bromoaryl)amidines. Chemistry - A European Journal, 2011, 17, 15039-15044.	3.3	92
80	A new multicomponent reaction for the synthesis of pyridines via cycloaddition of azadienes and ketenimines. Tetrahedron Letters, 2011, 52, 3023-3025.	1.4	27
81	Microwave-Assisted Multicomponent Synthesis of Heterocycles. Current Organic Chemistry, 2011, 15, 204-236.	1.6	44
82	A facile route to ruthenium–carbene complexes and their application in furfural hydrogenation. Applied Organometallic Chemistry, 2010, 24, 142-146.	3.5	18
83	Finding Furfural Hydrogenation Catalysts <i>via</i> Predictive Modelling. Advanced Synthesis and Catalysis, 2010, 352, 2201-2210.	4.3	22
84	Highly Stereoselective Synthesis of Substituted Prolyl Peptides Using a Combination of Biocatalytic Desymmetrization and Multicomponent Reactions. Angewandte Chemie - International Edition, 2010, 49, 5289-5292.	13.8	112
85	YidC Is Involved in the Biogenesis of the Secreted Autotransporter Hemoglobin Protease. Journal of Biological Chemistry, 2010, 285, 39682-39690.	3.4	23
86	Multicomponent Reaction Design Strategies: Towards Scaffold and Stereochemical Diversity. Topics in Heterocyclic Chemistry, 2010, , 95-126.	0.2	18
87	Synthesis of Polycyclic Alkaloid-Type Compounds by an N-Acyliminium ÂPictet-Spengler/Diels-Alder Sequence. Synlett, 2010, 2010, 2485-2489.	1.8	16
88	A highly efficient synthesis of telaprevir by strategic use of biocatalysis and multicomponent reactions. Chemical Communications, 2010, 46, 7918.	4.1	170
89	α-Acidic Isocyanides in Multicomponent Chemistry. Topics in Heterocyclic Chemistry, 2010, , 129-159.	0.2	12
90	Asymmetric synthesis of synthetic alkaloids by a tandem biocatalysis/Ugi/Pictet–Spengler-type cyclization sequence. Chemical Communications, 2010, 46, 7706.	4.1	86

#	Article	IF	CITATIONS
91	Scope and Limitations of an Efficient Four-Component Reaction for Dihydropyridin-2-ones. Journal of Organic Chemistry, 2010, 75, 1723-1732.	3.2	28
92	A Multicomponent Reaction Towards <i>N</i> â€(Cyanomethyl)amides. Chemistry - A European Journal, 2009, 15, 6096-6099.	3.3	26
93	The Efficient Oneâ€Pot Reaction of up to Eight Components by the Union of Multicomponent Reactions. Angewandte Chemie - International Edition, 2009, 48, 5856-5859.	13.8	128
94	Photocrosslinking and Click Chemistry Enable the Specific Detection of Proteins Interacting with Phospholipids at the Membrane Interface. Chemistry and Biology, 2009, 16, 3-14.	6.0	83
95	Synthesis of Conformationally Constrained Peptidomimetics using Multicomponent Reactions. Journal of Organic Chemistry, 2009, 74, 660-668.	3.2	37
96	A Novel Three-Component Reaction toward Dihydrooxazolopyridines. Organic Letters, 2009, 11, 125-128.	4.6	54
97	Selective Formation of 2â€Imidazolines and 2â€Substituted Oxazoles by Using a Three omponent Reaction. Chemistry - A European Journal, 2008, 14, 4961-4973.	3.3	93
98	Synthesis of 3′â€Deoxyribolactones using a Hydrolysisâ€Induced Lactonization Cascade Reaction of Epoxy Cyanohydrins. European Journal of Organic Chemistry, 2008, 2008, 1336-1339.	2.4	4
99	1-Azadienes in cycloaddition and multicomponent reactions towards N-heterocycles. Chemical Communications, 2008, , 5474.	4.1	193
100	Generation of molecular diversity using a complexity-generating MCR-platform towards triazinane diones. Organic and Biomolecular Chemistry, 2008, 6, 3158.	2.8	23
101	A Multicomponent Synthesis of Triazinane Diones. Journal of Organic Chemistry, 2008, 73, 719-722.	3.2	45
102	A Resource-Efficient and Highly Flexible Procedure for a Three-Component Synthesis of 2-Imidazolines. Journal of Organic Chemistry, 2007, 72, 6135-6142.	3.2	87
103	A Flexible Six-Component Reaction To Access Constrained Depsipeptides Based on a Dihydropyridinone Core. Journal of Organic Chemistry, 2007, 72, 10239-10242.	3.2	51
104	Selective enrichment of Ser-/Thr-phosphorylated peptides in the presence of Ser-/Thr-glycosylated peptides. Proteomics, 2006, 6, 6394-6399.	2.2	19
105	Development of a Novel Chemical Probe for the Selective Enrichment of Phosphorylated Serine- and Threonine-Containing Peptides. ChemBioChem, 2005, 6, 2271-2280.	2.6	64
106	Highly Substituted Tetrahydropyrones from Hetero-Diels—Alder Reactions of 2-Alkenals with Stereochemical Induction from Chiral Dienes ChemInform, 2005, 36, no.	0.0	0
107	Macrocycles Rapidly Produced by Multiple Multicomponent Reactions Including Bifunctional Building Blocks (MiBs). ChemInform, 2005, 36, no.	0.0	0
108	What Can a Chemist Learn from Nature′s Macrocycles? A Brief, Conceptual View. ChemInform, 2005, 36, no.	0.0	1

#	Article	IF	CITATIONS
109	Strategies for Total and Diversity-Oriented Synthesis of Natural Product(-like) Macrocycles. ChemInform, 2005, 36, no.	0.0	1
110	Macrocycles rapidly produced by multiple multicomponent reactions including bifunctional building blocks (MiBs). Molecular Diversity, 2005, 9, 159-169.	3.9	72
111	What can a chemist learn from nature?s macrocycles? ? A brief, conceptual view. Molecular Diversity, 2005, 9, 171-186.	3.9	206
112	Highly Substituted Tetrahydropyrones from Hetero-Dielsâ´'Alder Reactions of 2-Alkenals with Stereochemical Induction from Chiral Dienes. Journal of Organic Chemistry, 2005, 70, 2820-2823.	3.2	24
113	A New Route to Protected Acyloins and Their Enzymatic Resolution with Lipases. European Journal of Organic Chemistry, 2004, 2004, 1063-1074.	2.4	46
114	Synthesis and resolution of a key building block for epothilones: a comparison of asymmetric synthesis, chemical and enzymatic resolution. Tetrahedron: Asymmetry, 2004, 15, 2861-2869.	1.8	27
115	New Scavenger Resin for the Reversible Linking and Monoprotection of Functionalized Aromatic Aldehydes. Organic Letters, 2004, 6, 3921-3924.	4.6	19
116	Strategies for Total and Diversity-Oriented Synthesis of Natural Product(-Like) Macrocycles. Topics in Current Chemistry, 0, , 137-184.	4.0	87