Massimo Ferrario

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2924211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength. Physical Review Letters, 2000, 85, 3825-3829.	7.8	344
2	Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Applied Physics B: Lasers and Optics, 2007, 86, 431-435.	2.2	193
3	SPARC_LAB present and future. Nuclear Instruments & Methods in Physics Research B, 2013, 309, 183-188.	1.4	124
4	THE PHOTON COLLIDER AT TESLA. International Journal of Modern Physics A, 2004, 19, 5097-5186.	1.5	120
5	High-Gain Harmonic-Generation Free-Electron Laser Seeded by Harmonics Generated in Gas. Physical Review Letters, 2011, 107, 224801.	7.8	76
6	Observation of Time-Domain Modulation of Free-Electron-Laser Pulses by Multipeaked Electron-Energy Spectrum. Physical Review Letters, 2013, 111, 114802.	7.8	68
7	Self-Amplified Spontaneous Emission Free-Electron Laser with an Energy-Chirped Electron Beam and Undulator Tapering. Physical Review Letters, 2011, 106, 144801.	7.8	66
8	Electron Linac design to drive bright Compton back-scattering gamma-ray sources. Journal of Applied Physics, 2013, 113, 194508.	2.5	61
9	Direct Measurement of the Double Emittance Minimum in the Beam Dynamics of the Sparc High-Brightness Photoinjector. Physical Review Letters, 2007, 99, 234801.	7.8	59
10	The External-Injection experiment at the SPARC_LAB facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 740, 60-66.	1.6	45
11	Experimental characterization of active plasma lensing for electron beams. Applied Physics Letters, 2017, 110, .	3.3	42
12	Longitudinal Phase-Space Manipulation with Beam-Driven Plasma Wakefields. Physical Review Letters, 2019, 122, 114801.	7.8	41
13	Focusing of High-Brightness Electron Beams with Active-Plasma Lenses. Physical Review Letters, 2018, 121, 174801.	7.8	39
14	High-Order-Harmonic Generation and Superradiance in a Seeded Free-Electron Laser. Physical Review Letters, 2012, 108, 164801.	7.8	38
15	Linear and Nonlinear Thomson Scattering for Advanced X-ray Sources in PLASMONX. IEEE Transactions on Plasma Science, 2008, 36, 1782-1789.	1.3	35
16	Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions. Scientific Reports, 2016, 6, 35000.	3.3	32
17	Energy spread minimization in a beam-driven plasma wakefield accelerator. Nature Physics, 2021, 17, 499-503.	16.7	30
18	Experimental characterization of the effects induced by passive plasma lens on high brightness electron bunches. Applied Physics Letters, 2017, 111, .	3.3	29

MASSIMO FERRARIO

#	Article	IF	CITATIONS
19	Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression. New Journal of Physics, 2016, 18, 083033.	2.9	26
20	White-light femtosecond Lidar at 100ÂTW power level. Applied Physics B: Lasers and Optics, 2014, 114, 319-325.	2.2	23
21	Time-domain measurement of a self-amplified spontaneous emission free-electron laser with an energy-chirped electron beam and undulator tapering. Applied Physics Letters, 2012, 101, 134102.	3.3	20
22	The FLAME laser at SPARC_LAB. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 452-455.	1.6	20
23	Mapping the transverse coherence of the self amplified spontaneous emission of a free-electron laser with the heterodyne speckle method. Optics Express, 2014, 22, 30013.	3.4	18
24	Tailoring of Highly Intense THz Radiation Through High Brightness Electron Beams Longitudinal Manipulation. Applied Sciences (Switzerland), 2016, 6, 56.	2.5	17
25	Sub-picosecond snapshots of fast electrons from high intensity laser-matter interactions. Optics Express, 2016, 24, 29512.	3.4	17
26	Design of sub-Angstrom compact free-electron laser source. Optics Communications, 2017, 382, 58-63.	2.1	15
27	Ultrafast evolution of electric fields from high-intensity laser-matter interactions. Scientific Reports, 2018, 8, 3243.	3.3	15
28	Novel Single-Shot Diagnostics for Electrons from Laser-Plasma Interaction at SPARC_LAB. Quantum Beam Science, 2017, 1, 13.	1.2	14
29	Accurate spectra for high energy ions by advanced time-of-flight diamond-detector schemes in experiments with high energy and intensity lasers. Scientific Reports, 2021, 11, 3071.	3.3	14
30	The Potential of EuPRAXIA@SPARC_LAB for Radiation Based Techniques. Condensed Matter, 2019, 4, 30.	1.8	12
31	The C-Band accelerating structures for SPARC photoinjector energy upgrade. Journal of Instrumentation, 2013, 8, P05004-P05004.	1.2	11
32	Single-shot electrons and protons time-resolved detection from high-intensity laser–solid matter interactions at SPARC_LAB. High Power Laser Science and Engineering, 2019, 7, .	4.6	9
33	A Versatile THz Source from High-Brightness Electron Beams: Generation and Characterization. Condensed Matter, 2020, 5, 40.	1.8	7
34	Simultaneous observation of ultrafast electron and proton beams in TNSA. High Power Laser Science and Engineering, 2020, 8, .	4.6	6
35	Review on TNSA diagnostics and recent developments at SPARC_LAB. High Power Laser Science and Engineering, 2019, 7, .	4.6	4
36	Evolution of the electric fields induced in high intensity laser–matter interactions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 398-401.	1.6	2

#	Article	IF	CITATIONS
37	Recent studies on single-shot diagnostics for plasma accelerators at SPARC_LAB. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 364-368.	1.6	1
38	Ultrafast electron and proton bunches correlation in laser–solid matter experiments. Optics Letters, 2020, 45, 5575.	3.3	1