
Yongsheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2923996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Science of the Total Environment, 2021, 754, 142150.	8.0	245
2	The distribution of Pb(II)/Cd(II) adsorption mechanisms on biochars from aqueous solution: Considering the increased oxygen functional groups by HCl treatment. Bioresource Technology, 2019, 291, 121859.	9.6	141
3	Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal. Chemical Engineering Journal, 2018, 331, 536-544.	12.7	139
4	Fine particulate matter emission and size distribution characteristics in an ultra-low emission power plant. Fuel, 2016, 185, 863-871.	6.4	119
5	High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials. Journal of Colloid and Interface Science, 2020, 580, 77-87.	9.4	91
6	Increasing the chlorine active sites in the micropores of biochar for improved mercury adsorption. Fuel, 2018, 229, 60-67.	6.4	83
7	Enhanced mercury removal by transplanting sulfur-containing functional groups to biochar through plasma. Fuel, 2019, 253, 703-712.	6.4	81
8	Emission of volatile organic compounds (VOCs) during coal combustion at different heating rates. Fuel, 2018, 225, 554-562.	6.4	76
9	Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor. Fuel, 2014, 128, 274-280.	6.4	64
10	Trace element (Hg, As, Cr, Cd, Pb) distribution and speciation in coal-fired power plants. Fuel, 2017, 208, 647-654.	6.4	62
11	Kinetic studies of mercury adsorption in activated carbon modified by iodine steam vapor deposition method. Fuel, 2017, 188, 343-351.	6.4	62
12	In-Situ Capture of Mercury in Coal-Fired Power Plants Using High Surface Energy Fly Ash. Environmental Science & Technology, 2019, 53, 7913-7920.	10.0	56
13	Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant. Chemical Engineering Journal, 2020, 380, 122561.	12.7	56
14	A plasma-assisted catalytic system for NO removal over CuCe/ZSM-5 catalysts at ambient temperature. Fuel Processing Technology, 2017, 158, 199-205.	7.2	52
15	Using modified fly ash for mercury emissions control for coal-fired power plant applications in China. Fuel, 2016, 181, 1230-1237.	6.4	48
16	Study on the mercury captured by mechanochemical and bromide surface modification of coal fly ash. Fuel, 2017, 200, 427-434.	6.4	43
17	Reductions in Volatile Organic Compound Emissions from Coal-Fired Power Plants by Combining Air Pollution Control Devices and Modified Fly Ash. Energy & Fuels, 2019, 33, 2926-2933.	5.1	40
18	Synthesis and antibacterial activity evaluation of novel biaryloxazolidinone analogues containing a hydrazone moiety as promising antibacterial agents. European Journal of Medicinal Chemistry, 2018, 158, 247-258.	5.5	38

#	Article	IF	CITATIONS
19	Coeffect of Air Pollution Control Devices on Trace Element Emissions in an Ultralow Emission Coal-Fired Power Plant. Energy & Fuels, 2019, 33, 248-256.	5.1	38
20	Enhancing the pore wettability of coal-based porous carbon as electrode materials for high performance supercapacitors. Materials Chemistry and Physics, 2020, 252, 123381.	4.0	38
21	Evaluation of elemental mercury adsorption by fly ash modified with ammonium bromide. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1663-1672.	3.6	37
22	Mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor. Journal of Environmental Sciences, 2015, 33, 156-162.	6.1	36
23	Synthesis of O-doped coal-based carbon electrode materials by ultrasound-assisted bimetallic activation for application in supercapacitors. Applied Surface Science, 2020, 529, 147074.	6.1	36
24	Effect of Coordinated Air Pollution Control Devices in Coal-Fired Power Plants on Arsenic Emissions. Energy & Fuels, 2017, 31, 7309-7316.	5.1	35
25	Catalytic conversion of NO assisted by plasma over Mn-Ce/ZSM5-multi-walled carbon nanotubes composites: Investigation of acidity, activity and stability of catalyst in the synergic system. Applied Surface Science, 2018, 457, 187-199.	6.1	34
26	Occurrence of uranium in Chinese coals and its emissions from coal-fired power plants. Fuel, 2016, 166, 404-409.	6.4	33
27	Catalytic conversion of mercury over Ce doped Mn/SAPO-34 catalyst: Sulphur tolerance and SO2/SO3 conversion. Journal of Hazardous Materials, 2020, 381, 120986.	12.4	33
28	A review on adsorbent/catalyst application for mercury removal in flue gas: Effect of sulphur oxides (SO2, SO3). Journal of Cleaner Production, 2020, 276, 124220.	9.3	31
29	Oxygen-enriched coal-based porous carbon under plasma-assisted MgCO3 activation as supercapacitor electrodes. Fuel, 2022, 309, 122168.	6.4	30
30	Coupling of bromide and on-line mechanical modified fly ash for mercury removal at a 1000â€ [–] MW coal-fired power plant. Fuel, 2019, 247, 179-186.	6.4	29
31	Mechanochemical stabilization of heavy metals in fly ash from coal-fired power plants via dry milling and wet milling. Waste Management, 2021, 135, 428-436.	7.4	28
32	Photocatalytic removal of elemental mercury on TiO2-BiOIO3 heterostructures: Mercury transformation, sulfur tolerance and SO2/SO3 conversion. Chemical Engineering Journal, 2020, 388, 124390.	12.7	27
33	Distribution and emission of speciated volatile organic compounds from a coal-fired power plant with ultra-low emission technologies. Journal of Cleaner Production, 2020, 264, 121686.	9.3	26
34	The effect of moisture on particulate matter measurements in an ultra-low emission power plant. Fuel, 2019, 238, 430-439.	6.4	25
35	Thermogravimetric–Fourier Transform Infrared Spectroscopy–Gas Chromatography/Mass Spectrometry Study of Volatile Organic Compounds from Coal Pyrolysis. Energy & Fuels, 2017, 31, 7042-7051.	5.1	24
36	Temperature and emissions characteristics of a micro-mixing injection hydrogen-rich syngas flame diluted with N2. International Journal of Hydrogen Energy, 2015, 40, 12550-12559.	7.1	23

#	Article	IF	CITATIONS
37	Influences of NO on mercury adsorption characteristics for HBr modified fly ash. International Journal of Coal Geology, 2017, 170, 77-83.	5.0	22
38	Distribution characteristics and environmental risk assessment of trace elements in desulfurization sludge from coal-fired power plants. Fuel, 2022, 314, 122771.	6.4	22
39	Synthesis of activated carbon from coal pitch for mercury removal in coal-fired power plants. Journal of Thermal Analysis and Calorimetry, 2016, 123, 851-860.	3.6	21
40	Arsenic release and transformation in co-combustion of biomass and coal: Effect of mineral elements and volatile matter in biomass. Bioresource Technology, 2020, 297, 122388.	9.6	21
41	Promotional effect of NH3 on mercury removal over biochar thorough chlorine functional group transformation. Journal of Cleaner Production, 2020, 257, 120598.	9.3	21
42	Study of mercury adsorption by selected Chinese coal fly ashes. Journal of Thermal Analysis and Calorimetry, 2014, 116, 1197-1203.	3.6	20
43	Distribution of Organic Compounds in Coal-Fired Power Plant Emissions. Energy & Fuels, 2019, 33, 5430-5437.	5.1	20
44	lonic mercury captured by H2S sulfurized biochar in liquid hydrocarbons: Mechanism and stability evaluation. Fuel, 2020, 278, 118413.	6.4	20
45	Oxidation of elemental mercury with non-thermal plasma coupled with a wet process. Fuel, 2017, 197, 320-325.	6.4	19
46	Optimized methods for preparing activated carbon from rock asphalt using orthogonal experimental design. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1989-1999.	3.6	18
47	Mechanochemistry coupled with MgCO3 one-step activation to prepare coal-based hierarchical porous carbon for supercapacitors. Journal of Power Sources, 2021, 503, 230049.	7.8	18
48	Supercritical CO2 coupled with mechanical force to enhance carbonation of fly ash and heavy metal solidification. Fuel, 2022, 315, 123154.	6.4	18
49	Plasma Induced Addition of Active Functional Groups to Biochar for Elemental Mercury Removal. Plasma Chemistry and Plasma Processing, 2019, 39, 1449-1468.	2.4	17
50	Derivation of oxygen-containing functional groups on biochar under non-oxygen plasma for mercury removal. Fuel, 2020, 275, 117879.	6.4	17
51	Synergistic effects of mineral matter on the combustion of coal blended with biomass. Journal of Thermal Analysis and Calorimetry, 2013, 113, 489-496.	3.6	16
52	Influence of biomass on coal combustion based on thermogravimetry and Fourier transform infrared spectroscopy. Journal of Thermal Analysis and Calorimetry, 2015, 122, 1289-1298.	3.6	16
53	Speciation analysis of Hg, As, Pb, Cd, and Cr in fly ash at different ESP's hoppers. Fuel, 2020, 280, 118688.	6.4	16
54	Promotional effect of sulfur trioxide (SO3) on elemental mercury removal over Cu/ZSM-5 catalyst. Applied Surface Science, 2020, 511, 145604.	6.1	16

#	Article	IF	CITATIONS
55	Reduction of Emissions from a Syngas Flame Using Micromixing and Dilution with CO ₂ . Energy & Fuels, 2012, 26, 6595-6601.	5.1	15
56	Increasing Recovery Ratios with an Improved European Community Bureau of Reference Method for Mercury Analysis in Flue Gas Desulfurization Gypsum. Energy & Fuels, 2018, 32, 8340-8347.	5.1	15
57	Mineralization characteristics of coal fly ash in the transition from non-supercritical CO2 to supercritical CO2. Fuel, 2022, 318, 123636.	6.4	15
58	Partitioning effect of mercury content and speciation in gypsum slurry as a function of time. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1611-1618.	3.6	14
59	One-pot synthesis of N-fused 1,2,4-triazoles and related heterocycles via I2/TBHP-mediated oxidative C N bond formation. Tetrahedron Letters, 2018, 59, 4216-4220.	1.4	12
60	Preadsorbed SO ₃ Inhibits Oxygen Atom Activity for Mercury Adsorption on Cu/Mn Doped CeO ₂ (110) Surface. Energy & Fuels, 2020, 34, 4734-4744.	5.1	12
61	Homogeneous mercury oxidation with bromine species released from HBr-modified fly ash. Fuel, 2016, 169, 58-67.	6.4	11
62	Removal of ionic mercury from gasoline using zeolite 13X impregnated with KI: Adsorption mechanisms and simulation. Chemical Engineering Journal, 2021, 409, 128170.	12.7	11
63	Highly efficient capacitive removal of Cd2+ over MoS2-Carbon framework composite material in desulphurisation wastewater from coal-fired power plants. Journal of Cleaner Production, 2022, 355, 131814.	9.3	11
64	Full-Scale Demonstration of Enzyme-Treated Coal Combustion for Improved Energy Efficiency and Reduced Air Pollution. Energy & Fuels, 2018, 32, 6584-6594.	5.1	10
65	Sensory characteristics of Maillard reaction products from chicken protein hydrolysates with different degrees of hydrolysis. CYTA - Journal of Food, 2019, 17, 221-227.	1.9	9
66	Effects of light intensity on larval development and juvenile growth of sea cucumber <i>Apostichopus japonicus</i> . Aquaculture Research, 2019, 50, 2333-2340.	1.8	9
67	Significant enhancement of VOCs conversion by facile mechanochemistry coupled MnO2 modified fly ash: Mechanism and application. Fuel, 2021, 304, 121443.	6.4	9
68	Investigating the effect of flue gas temperature and excess air coefficient on the size distribution of condensable particulate matters. Fuel, 2021, 298, 120866.	6.4	8
69	Mercury sorption properties of HBr-modified fly ash in a fixed bed reactor. Journal of Thermal Analysis and Calorimetry, 2016, 124, 387-393.	3.6	7
70	Molecular-level insights into the immobilization of vapor-phase mercury on Fe/Co/Ni-doped hierarchical molybdenum selenide. Journal of Hazardous Materials, 2021, 420, 126583.	12.4	7
71	Preparation of energy storage materials working at 20–25°C as a cold source for long-term stable operation. Applied Thermal Engineering, 2021, 183, 116220.	6.0	6
72	Performance of a thermally regenerative ammonia-based battery using gradient-porous copper foam electrodes. Science China Technological Sciences, 2021, 64, 696-704.	4.0	6

#	Article	IF	CITATIONS
73	Application of mechanochemical technology for removal/solidification pollutant and preparation/recycling energy storage materials. Journal of Cleaner Production, 2022, 348, 131351.	9.3	6
74	A Comparison of NO Reduction Over Mn–Cu/ZSM5 and Mn–Cu/MWCNTs Catalysts Assisted by Plasma at Ambient Temperature. Catalysis Surveys From Asia, 2017, 21, 94-102.	2.6	5
75	Effect of annealing temperature on the continuity and conductivity of coal-based carbon films prepared by ball milling. Applied Surface Science, 2020, 510, 145411.	6.1	5
76	Impact of the mercury removal system using modified fly ash on particulate matter emission. Fuel, 2021, 301, 121054.	6.4	5
77	Applications of thermal stepwise reactions on the co-gasification of coal and tobacco stems. Journal of Thermal Analysis and Calorimetry, 2014, 116, 1205-1212.	3.6	4
78	Combustion behaviour and chemical structure changes of enzyme-treated coal. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1287-1294.	3.6	3
79	Mercury emissions and distribution in a waste incineration plant based on the 30B and Ontario Hydro methods. Journal of Cleaner Production, 2021, 328, 129663.	9.3	3