Michael Eschbaumer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2923772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Orthobunyavirus in Cattle, Europe, 2011. Emerging Infectious Diseases, 2012, 18, 469-472.	4.3	553
2	Full Genome Characterisation of Bluetongue Virus Serotype 6 from the Netherlands 2008 and Comparison to Other Field and Vaccine Strains. PLoS ONE, 2010, 5, e10323.	2.5	119
3	The Foot-and-Mouth Disease Carrier State Divergence in Cattle. Journal of Virology, 2016, 90, 6344-6364.	3.4	96
4	Efficacy of three inactivated vaccines against bluetongue virus serotype 8 in sheep. Vaccine, 2009, 27, 4169-4175.	3.8	78
5	Oral exposure, reinfection and cellular immunity to Schmallenberg virus in cattle. Veterinary Microbiology, 2013, 165, 155-159.	1.9	74
6	Schmallenberg virus challenge models in cattle: infectious serum or culture-grown virus?. Veterinary Research, 2012, 43, 84.	3.0	60
7	Rapid Generation of Replication-Deficient Monovalent and Multivalent Vaccines for Bluetongue Virus: Protection against Virulent Virus Challenge in Cattle and Sheep. Journal of Virology, 2013, 87, 9856-9864.	3.4	50
8	Evaluation of humoral response and protective efficacy of three inactivated vaccines against bluetongue virus serotype 8 one year after vaccination of sheep and cattle. Vaccine, 2010, 28, 4348-4355.	3.8	46
9	Pathogenesis of Primary Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Vaccinated and Non-Vaccinated Cattle. PLoS ONE, 2015, 10, e0143666.	2.5	46
10	Emergence of bluetongue virus serotype 6 in Europe—German field data and experimental infection of cattle. Veterinary Microbiology, 2010, 143, 189-195.	1.9	41
11	Real-Time Quantitative Reverse Transcription-PCR Assays Specifically Detecting Bluetongue Virus Serotypes 1, 6, and 8. Journal of Clinical Microbiology, 2009, 47, 2992-2994.	3.9	39
12	An Equine Herpesvirus Type 1 (EHV-1) Expressing VP2 and VP5 of Serotype 8 Bluetongue Virus (BTV-8) Induces Protection in a Murine Infection Model. PLoS ONE, 2012, 7, e34425.	2.5	39
13	Schmallenberg Virus Infection of Adult Type I Interferon Receptor Knock-Out Mice. PLoS ONE, 2012, 7, e40380.	2.5	35
14	Stability of African Swine Fever Virus in Soil and Options to Mitigate the Potential Transmission Risk. Pathogens, 2020, 9, 977.	2.8	30
15	Experimental infection of South American camelids with bluetongue virus serotype 8. Veterinary Microbiology, 2012, 154, 257-265.	1.9	27
16	Systemic immune response and virus persistence after foot-and-mouth disease virus infection of naÃ ⁻ ve cattle and cattle vaccinated with a homologous adenovirus-vectored vaccine. BMC Veterinary Research, 2016, 12, 205.	1.9	27
17	Clearance of a persistent picornavirus infection is associated with enhanced pro-apoptotic and cellular immune responses. Scientific Reports, 2017, 7, 17800.	3.3	26
18	Infectious blood or culture-grown virus: A comparison of bluetongue virus challenge models. Veterinary Microbiology, 2010, 146, 150-154.	1.9	24

#	Article	IF	CITATIONS
19	Phylodynamics of foot-and-mouth disease virus O/PanAsia in Vietnam 2010–2014. Veterinary Research, 2017, 48, 24.	3.0	24
20	Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx. PLoS ONE, 2016, 11, e0162750.	2.5	23
21	Cell culture propagation of foot-and-mouth disease virus: adaptive amino acid substitutions in structural proteins and their functional implications. Virus Genes, 2020, 56, 1-15.	1.6	21
22	Epizootic hemorrhagic disease virus serotype 7 in European cattle and sheep: Diagnostic considerations and effect of previous BTV exposure. Veterinary Microbiology, 2012, 159, 298-306.	1.9	20
23	Replication-Deficient Particles: New Insights into the Next Generation of Bluetongue Virus Vaccines. Journal of Virology, 2017, 91, .	3.4	20
24	Long-term persistence of neutralising antibodies against bluetongue virus serotype 8 in naturally infected cattle. Vaccine, 2012, 30, 7142-7143.	3.8	19
25	Airborne Disinfection by Dry Fogging Efficiently Inactivates Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacteria, and Bacterial Spores and Shows Limitations of Commercial Spore Carriers. Applied and Environmental Microbiology, 2021, 87, .	3.1	19
26	Evaluation of Infectivity, Virulence and Transmission of FDMV Field Strains of Serotypes O and A Isolated In 2010 from Outbreaks in the Republic of Korea. PLoS ONE, 2016, 11, e0146445.	2.5	17
27	Contamination in bluetongue virus challenge experiments. Vaccine, 2011, 29, 4299-4301.	3.8	16
28	Influence of cell type and cell culture media on the propagation of foot-and-mouth disease virus with regard to vaccine quality. Virology Journal, 2018, 15, 46.	3.4	15
29	Epizootic hemorrhagic disease virus infection of type I interferon receptor deficient mice. Veterinary Microbiology, 2012, 155, 417-419.	1.9	14
30	Proteogenomics Uncovers Critical Elements of Host Response in Bovine Soft Palate Epithelial Cells Following In Vitro Infection with Foot-And-Mouth Disease Virus. Viruses, 2019, 11, 53.	3.3	13
31	Cross-sectional study of bluetongue virus serotype 8 infection in South American camelids in Germany (2008/2009). Veterinary Microbiology, 2012, 160, 35-42.	1.9	11
32	Cell Density Effects in Different Cell Culture Media and Their Impact on the Propagation of Foot-And-Mouth Disease Virus. Viruses, 2019, 11, 511.	3.3	11
33	Serotyping of foot-and-mouth disease virus using oxford nanopore sequencing. Journal of Virological Methods, 2019, 263, 50-53.	2.1	11
34	Inactivation of foot-and-mouth disease virus A/IRN/8/2015 with commercially available lysis buffers. Journal of Virological Methods, 2020, 278, 113835.	2.1	11
35	Investigation of cell culture conditions for optimal foot-and-mouth disease virus production. BMC Biotechnology, 2019, 19, 33.	3.3	10
36	Footâ€andâ€mouth disease viruses of the O/MEâ€SA/Indâ€2001e sublineage in Pakistan. Transboundary and Emerging Diseases, 2021, 68, 3126-3135.	3.0	10

#	Article	IF	CITATIONS
37	Bluetongue Disease: An Analysis of the Epidemic in Germany 2006–2009. Parasitology Research Monographs, 2012, , 103-135.	0.3	10
38	Assessment of neutralizing and non-neutralizing antibody responses against Porcine circovirus 2 in vaccinated and non-vaccinated farmed pigs. Journal of General Virology, 2015, 96, 2743-2748.	2.9	9
39	Adaption of FMDV Asia-1 to Suspension Culture: Cell Resistance Is Overcome by Virus Capsid Alterations. Viruses, 2017, 9, 231.	3.3	9
40	Model of persistent footâ€andâ€mouth disease virus infection in multilayered cells derived from bovine dorsal soft palate. Transboundary and Emerging Diseases, 2020, 67, 133-148.	3.0	8
41	Sequence Analysis of Egyptian Foot-and-Mouth Disease Virus Field and Vaccine Strains: Intertypic Recombination and Evidence for Accidental Release of Virulent Virus. Viruses, 2020, 12, 990.	3.3	8
42	Inactivation of foot-and-mouth disease virus in epithelium samples for safe transport and processing in low-containment laboratories. Journal of Virological Methods, 2020, 276, 113770.	2.1	7
43	Re: Detection of bluetongue virus genome after vaccination with an inactivated vaccine. Vaccine, 2010, 28, 881-882.	3.8	6
44	Rapid detection of neutralizing antibodies against bovine viral diarrhoea virus using quantitative high-content screening. Journal of Virological Methods, 2014, 198, 56-63.	2.1	6
45	Site-specific substitution (Q172R) in the VP1 protein of FMDV isolates collected from asymptomatic carrier ruminants in Vietnam. Virology Reports, 2016, 6, 90-96.	0.4	5
46	Reliable detection, sequencing, and transfection of foot-and-mouth disease virus RNA from badly preserved vesicular epithelium. Journal of Veterinary Diagnostic Investigation, 2019, 31, 778-782.	1.1	5
47	Mechanisms of Maintenance of Foot-and-Mouth Disease Virus Persistence Inferred From Genes Differentially Expressed in Nasopharyngeal Epithelia of Virus Carriers and Non-carriers. Frontiers in Veterinary Science, 2020, 7, 340.	2.2	5
48	High-Resolution Composition Analysis of an Inactivated Polyvalent Foot-and-Mouth Disease Vaccine. Pathogens, 2020, 9, 63.	2.8	5
49	Inter-laboratory validation of foot-and-mouth disease diagnostic capability in Germany. Veterinary Microbiology, 2017, 203, 62-67.	1.9	4
50	Foot-and-Mouth Disease Virus Lacking the Leader Protein and Containing Two Negative DIVA Markers (FMDV LL3B3D A24) Is Highly Attenuated in Pigs. Pathogens, 2020, 9, 129.	2.8	4
51	Chemical inactivation of foot-and-mouth disease virus in bovine tongue epithelium for safe transport and downstream processing. Journal of Virological Methods, 2022, 305, 114539.	2.1	3
52	Proof of Proficiency of Decentralized Foot-and-Mouth Disease Virus Diagnostics in Germany. Viruses, 2022, 14, 1098.	3.3	3
53	Effect of storage conditions on subpopulations of peripheral blood T lymphocytes isolated from naÃ⁻ve cattle and cattle infected with footâ€andâ€mouth disease virus. Veterinary Clinical Pathology, 2016, 45, 110-115.	0.7	2
54	Adherent and suspension baby hamster kidney cells have a different cytoskeleton and surface receptor repertoire. PLoS ONE, 2021, 16, e0246610.	2.5	2

MICHAEL ESCHBAUMER

#	Article	IF	CITATIONS
55	Non-discriminatory Exclusion Testing as a Tool for the Early Detection of Foot-and-Mouth Disease Incursions. Frontiers in Veterinary Science, 2020, 7, 552670.	2.2	2
56	Targeted Modification of the Foot-And-Mouth Disease Virus Genome for Quick Cell Culture Adaptation. Vaccines, 2020, 8, 583.	4.4	1
57	Field Observations and Genetic Characterization of Sheep-Associated Malignant Catarrhal Fever in Egypt, 2018. Veterinary Sciences, 2020, 7, 201.	1.7	1
58	Induction of humoral immune response in piglets after perinatal or post-weaning immunization against porcine circovirus type-2 or keyhole limpet hemocyanin. Canadian Journal of Veterinary Research, 2017, 81, 5-11.	0.2	1
59	Dry-fog decontamination of microbiological safety cabinets after activities with SARS-CoV-2: cycle development and process validation for dry fogging with peroxyacetic acid. GMS Hygiene and Infection Control, 2021, 16, Doc26.	0.3	1
60	After nasopharyngeal infection, foot-and-mouth disease virus serotype A RNA is shed in bovine milk without associated mastitis. Journal of Veterinary Diagnostic Investigation, 2021, 33, 997-1001.	1.1	0
61	Probe-free real-time reverse transcription polymerase chain reaction assays for the detection and typing of porcine reproductive and respiratory syndrome virus in Canada. Canadian Journal of Veterinary Research, 2015, 79, 170-9	0.2	0