
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2923620/publications.pdf Version: 2024-02-01



MASATO TOMINACA

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochemistry Communications, 2005, 7, 189-193.                                                                          | 4.7  | 225       |
| 2  | Electrocatalytic oxidation of glucose at gold–silver alloy, silver and gold nanoparticles in an alkaline solution. Journal of Electroanalytical Chemistry, 2006, 590, 37-46.                                                                         | 3.8  | 188       |
| 3  | Direct electron transfer of horse heart myoglobin at an indium oxide electrode. Journal of<br>Electroanalytical Chemistry, 1992, 333, 331-338.                                                                                                       | 3.8  | 135       |
| 4  | d-Fructose detection based on the direct heterogeneous electron transfer reaction of fructose<br>dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode.<br>Biosensors and Bioelectronics, 2009, 24, 1184-1188. | 10.1 | 76        |
| 5  | Tunable electrochemical synthesis of 3D nucleated microparticles like Cu-BTC MOF-carbon nanotubes composite: Enzyme free ultrasensitive determination of glucose in a complex biological fluid.<br>Electrochimica Acta, 2020, 354, 136673.           | 5.2  | 69        |
| 6  | Electrochemical, AFM and QCM studies on ferritin immobilized onto a self-assembled<br>monolayer-modified gold electrode. Journal of Electroanalytical Chemistry, 2004, 566, 323-329.                                                                 | 3.8  | 67        |
| 7  | Electrocatalytic glucose oxidation at bimetallic gold–copper nanoparticle-modified carbon<br>electrodes in alkaline solution. Journal of Electroanalytical Chemistry, 2008, 624, 1-8.                                                                | 3.8  | 66        |
| 8  | Surface poisoning during electrocatalytic monosaccharide oxidation reactions at gold electrodes in alkaline medium. Electrochemistry Communications, 2007, 9, 1892-1898.                                                                             | 4.7  | 60        |
| 9  | Composition–activity relationships of carbon electrode-supported bimetallic gold–silver<br>nanoparticles in electrocatalytic oxidation of glucose. Journal of Electroanalytical Chemistry, 2008,<br>615, 51-61.                                      | 3.8  | 60        |
| 10 | Gold single-crystal electrode surface modified with self-assembled monolayers for electron tunneling with bilirubin oxidase. Physical Chemistry Chemical Physics, 2008, 10, 6928.                                                                    | 2.8  | 60        |
| 11 | Effect of Surface Hydrophilicity of an Indium Oxide Electrode on Direct Electron Transfer of<br>Myoglobins. Chemistry Letters, 1993, 22, 1771-1774.                                                                                                  | 1.3  | 54        |
| 12 | UV–Ozone Treatments Improved Carbon Black Surface for Direct Electron-transfer Reactions with<br>Bilirubin Oxidase under Aerobic Conditions. Chemistry Letters, 2006, 35, 1174-1175.                                                                 | 1.3  | 51        |
| 13 | Direct heterogeneous electron transfer reactions and molecular orientation of fructose<br>dehydrogenase adsorbed onto pyrolytic graphite electrodes. Journal of Electroanalytical Chemistry,<br>2007, 610, 1-8.                                      | 3.8  | 50        |
| 14 | Laccase Bioelectrocatalyst at a Steroid-Type Biosurfactant-Modified Carbon Nanotube Interface.<br>Analytical Chemistry, 2015, 87, 5417-5421.                                                                                                         | 6.5  | 38        |
| 15 | Electrocatalytic Oxidation of Glucose at Carbon Electrodes Modified with Gold and Gold–Platinum<br>Alloy Nanoparticles in an Alkaline Solution. Chemistry Letters, 2005, 34, 202-203.                                                                | 1.3  | 30        |
| 16 | Growth of carbon nanotubes on a gold (111) surface using two-dimensional iron oxide nano-particle catalysts derived from iron storage protein. Chemical Communications, 2004, , 1518.                                                                | 4.1  | 29        |
| 17 | UV-ozone dry-cleaning process for indium oxide electrodes for protein electrochemistry.<br>Electrochemistry Communications, 2005, 7, 1423-1428.                                                                                                      | 4.7  | 29        |
| 18 | Size control for two-dimensional iron oxide nanodots derived from biological molecules. Journal of<br>Colloid and Interface Science, 2006, 299, 761-765.                                                                                             | 9.4  | 25        |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Bioelectrocatalytic current based on direct heterogeneous electron transfer reaction of glucose<br>oxidase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode surfaces.<br>Electrochemistry Communications, 2008, 10, 888-890. | 4.7 | 25        |
| 20 | Jungle-Gym Structured Films of Single-Walled Carbon Nanotubes on a Gold Surface: Oxidative<br>Treatment and Electrochemical Properties. Journal of Physical Chemistry C, 2012, 116, 9498-9506.                                                            | 3.1 | 25        |
| 21 | Hydrothermal preparation of a platinum-loaded sulphated nanozirconia catalyst for the effective conversion of waste low density polyethylene into gasoline-range hydrocarbons. RSC Advances, 2019, 9, 41392-41401.                                        | 3.6 | 24        |
| 22 | Polypeptide-modified indium oxide electrodes for direct electron tranfer of ferredoxin. Journal of the Chemical Society Chemical Communications, 1994, , 953.                                                                                             | 2.0 | 23        |
| 23 | Fast growth of Au-Pt bimetallic nanoparticles on SWCNTs: Composition dependent electrocatalytic activity towards glucose and hydrogen peroxide. Journal of Electroanalytical Chemistry, 2017, 798, 24-33.                                                 | 3.8 | 22        |
| 24 | Oxidative corrosion potential vs. pH diagram for single-walled carbon nanotubes. RSC Advances, 2014,<br>4, 27224.                                                                                                                                         | 3.6 | 21        |
| 25 | Electrostatic modification of ferritin onto polypeptide-functionalized indium oxide electrode<br>surfaces: Electrochemical and AFM studies. Journal of Electroanalytical Chemistry, 2005, 579, 51-58.                                                     | 3.8 | 20        |
| 26 | Electrochemical Sensor Based on Single-Walled Carbon Nanotubes-Modified Gold Electrode for Uric<br>Acid Detection. Journal of the Electrochemical Society, 2018, 165, B515-B522.                                                                          | 2.9 | 18        |
| 27 | Cellulose nanofiber-based electrode as a component of an enzyme-catalyzed biofuel cell. RSC<br>Advances, 2020, 10, 22120-22125.                                                                                                                           | 3.6 | 18        |
| 28 | Thermal Stability and Electrode Reaction of Chlorella Ferredoxin Embedded in Artificial Lipid Bilayer<br>Membrane Films on a Graphite Electrode. Analytical Chemistry, 1999, 71, 2790-2796.                                                               | 6.5 | 17        |
| 29 | Effect of N-Doping of Single-Walled Carbon Nanotubes on Bioelectrocatalysis of Laccase. Analytical<br>Chemistry, 2014, 86, 5053-5060.                                                                                                                     | 6.5 | 17        |
| 30 | Nano-ordered topographical effects on dissociation of carboxylic acid terminated self-assembled monolayers adsorbed onto a gold surface. Journal of Electroanalytical Chemistry, 2007, 603, 203-211.                                                      | 3.8 | 15        |
| 31 | Single-Walled Carbon Nanotubes-Modified Gold Electrode for Dopamine Detection. ECS Journal of Solid State Science and Technology, 2017, 6, M3109-M3112.                                                                                                   | 1.8 | 15        |
| 32 | Electrochemically Regulated Iron Uptake and Release for Ferritin Immobilized on Self-Assembled<br>Monolayer-Modified Gold Electrodes. Chemistry Letters, 2001, 30, 704-705.                                                                               | 1.3 | 14        |
| 33 | Controlled-potential electrosynthesis of glucosaminic acid from glucosamine at a gold electrode.<br>Electrochemistry Communications, 2007, 9, 911-914.                                                                                                    | 4.7 | 14        |
| 34 | Correlation between carbon oxygenated species of SWCNTs and the electrochemical oxidation reaction of NADH. Electrochemistry Communications, 2013, 31, 76-79.                                                                                             | 4.7 | 13        |
| 35 | Electrochemistry in Middle Phase Microemulsion Composed of Saline and Toluene with Sodium<br>Dodecylsulfate and n-Butanol. Chemistry Letters, 2002, 31, 360-361.                                                                                          | 1.3 | 12        |
| 36 | Dependence of the Electrochemical Response of Ferritin on the Number of Iron Atoms at the Ferritin<br>Core. Chemistry Letters, 2003, 32, 954-955.                                                                                                         | 1.3 | 12        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Size-tuneable and micro-patterned iron nanoparticles derived from biomolecules via microcontact printing SAM-modified substrates and controlled-potential electrolyses. Journal of Colloid and Interface Science, 2007, 313, 135-140. | 9.4 | 12        |
| 38 | Electrochemistry of Cytochrome c Components at Indium Oxide and Promoter Modified Electrodes.<br>Electrochemistry, 1992, 60, 1043-1049.                                                                                               | 0.3 | 12        |
| 39 | Electrochemical Investigation of Dynamic Solution Structures of Bicontinuous Microemulsion at Solid Interfaces. Chemistry Letters, 2010, 39, 1152-1154.                                                                               | 1.3 | 11        |
| 40 | Bioelectrocatalytic Oxygen Reaction and Chloride Inhibition Resistance of Laccase Immobilized on<br>Single-walled Carbon Nanotube and Carbon Paper Electrodes. Electrochemistry, 2016, 84, 315-318.                                   | 1.4 | 11        |
| 41 | Application of Promoter Modified Electrodes to Bioelectrochemical Measurements on the Effects of<br>Origin and Modification of Lysine Residues of Cytochrome c. Analytical Sciences, 1992, 8, 829-836.                                | 1.6 | 9         |
| 42 | Redox reaction characteristics of ferritin-immobilized onto poly(l-lysine)-modified indium oxide electrodes. Journal of Electroanalytical Chemistry, 2008, 617, 78-84.                                                                | 3.8 | 9         |
| 43 | Sensitivity to electrical stimulation of human immunodeficiency virus type 1 and MAGIC-5 cells. AMB Express, 2011, 1, 23.                                                                                                             | 3.0 | 8         |
| 44 | Determination of the Diameterâ€Đependent Onset Potential for the Oxygenation of SWCNTs. Chemistry -<br>an Asian Journal, 2013, 8, 2680-2684.                                                                                          | 3.3 | 8         |
| 45 | Highly sensitive detection of phosphate using well-ordered crystalline cobalt oxide nanoparticles supported by multi-walled carbon nanotubes. Materials Advances, 2022, 3, 2018-2025.                                                 | 5.4 | 8         |
| 46 | Spectroelectrochemical Study of some μ <sub>3</sub> -Oxo-μ-acetato Trinuclear Rhodium(III) and<br>Iridium(III) Complexes. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1995,<br>50, 551-557.              | 0.7 | 7         |
| 47 | Effect of electrical stimulation on human immunodeficiency virus type-1 infectivity. Applied Microbiology and Biotechnology, 2007, 77, 947-953.                                                                                       | 3.6 | 7         |
| 48 | Iron metal induced deoxygenation of graphite oxide nanosheets-insights on the capacitive properties of binder-free electrodes. RSC Advances, 2015, 5, 23367-23373.                                                                    | 3.6 | 7         |
| 49 | Biosurfactant functionalized single-walled carbon nanotubes to promote laccase bioelectrocatalysis. New Journal of Chemistry, 2017, 41, 231-236.                                                                                      | 2.8 | 7         |
| 50 | Formation of Water-Soluble Iron Oxide Nanoparticles Derived from Iron Storage Protein. Journal of<br>Nanoscience and Nanotechnology, 2004, 4, 708-711.                                                                                | 0.9 | 6         |
| 51 | Effect of Surface-oxidized Structure of Single-walled Carbon Nanotubes on Heterogeneous Direct<br>Electron-transfer Reaction of Cytochrome <i>c</i> . Chemistry Letters, 2010, 39, 976-977.                                           | 1.3 | 6         |
| 52 | In situ Raman spectroelectrochemical study of potential-induced molecular encapsulation of<br>β-carotene inside single-walled carbon nanotubes. Journal of Electroanalytical Chemistry, 2017, 800,<br>156-161.                        | 3.8 | 6         |
| 53 | Effect of phase transition on the electrochemical behavior of ferredoxin embedded in an artificial<br>lipid membrane film. Journal of Electroanalytical Chemistry, 2004, 561, 13-20.                                                  | 3.8 | 5         |
| 54 | Effect of oxygen adsorption on the electrochemical oxidative corrosion of single-walled carbon nanotubes. RSC Advances, 2014, 4, 53833-53836.                                                                                         | 3.6 | 4         |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Frequency change-induced alternative potential waveform dependence of membrane damage to cells cultured on an electrode surface. Journal of Biotechnology, 2007, 129, 498-501.                                         | 3.8 | 3         |
| 56 | The use of mud as an alternative source for bioelectricity using microbial fuel cells. AIP Conference Proceedings, 2017, , .                                                                                           | 0.4 | 3         |
| 57 | The effect of connection type in series and parallel on electric power generation of mud microbial fuel cell. AIP Conference Proceedings, 2020, , .                                                                    | 0.4 | 3         |
| 58 | Fluorescence spectrophotometry for COVID-19 determination in clinical swab samples. Arabian<br>Journal of Chemistry, 2022, 15, 104020.                                                                                 | 4.9 | 3         |
| 59 | Direct electrochemistry of iron(III)- and copper(II)-transferrins embedded in a bilayer membrane film composed of artificial cationic-type lipid. Electrochemistry Communications, 2002, 4, 968-972.                   | 4.7 | 2         |
| 60 | Catalytic Current Based on Direct Electron Transfer Reactions of Enzymes Immobilized onto Carbon<br>Nanotubes. ECS Transactions, 2009, 16, 1-8.                                                                        | 0.5 | 2         |
| 61 | Improvement of laccase bioelectrocatalyst at a phosphate templating graphene nanoplatelet plate electrode. Electrochemistry Communications, 2015, 59, 32-35.                                                           | 4.7 | 2         |
| 62 | Artificial Lipid Bilayer Membrane Films-modified Graphite Electrode for Incorporation and Electrochemistry of Horse Spleen Ferritin. Electrochemistry, 2001, 69, 937-939.                                              | 1.4 | 2         |
| 63 | Electron-transfer reactions of peroxidase at carbon electrodes Bunseki Kagaku, 1991, 40, 859-861.                                                                                                                      | 0.2 | 1         |
| 64 | Response of SWCNTs/KPG5-modified carbon electrode on dopamine, uric acid and ascorbic acid. IOP<br>Conference Series: Materials Science and Engineering, 2019, 494, 012049.                                            | 0.6 | 1         |
| 65 | Redox Reaction of Ferritin Immobilized onto SAMs- and Polypeptides-Modified Electrodes. Review of<br>Polarography, 2010, 56, 67-80.                                                                                    | 0.1 | 0         |
| 66 | Cholate Adsorption Behavior at Carbon Electrode Interface and Its Promotional Effect in Laccase<br>Direct Bioelectrocatalysis. Colloids and Interfaces, 2018, 2, 33.                                                   | 2.1 | 0         |
| 67 | Temperature depending bioelectrocatalysis current of multicopper oxidase from a hyperthermophilic archaeon Pyrobaculum aerophilum. Electrochemistry Communications, 2021, 125, 106982.                                 | 4.7 | 0         |
| 68 | Effect of functional groups at carbon nano-structured materials on electron transfer reaction of enzymes. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2009, 17, 21-25.                                        | 0.0 | 0         |
| 69 | Development of Bio-Functional Molecule-Modified Nano-Carbon Electrode for Fast Catalytic Oxygen<br>Reduction with Highly Electrode Potential. Hosokawa Powder Technology Foundation ANNUAL<br>REPORT, 2017, 25, 79-83. | 0.0 | 0         |
| 70 | Oxygen-catalyzed Reduction Reaction at Nitrogen-doped Carbon Synthesized by Post-synthesis Method<br>Using Single-walled Carbon Nanotubes as a Substrate Electrode. Bunseki Kagaku, 2021, 70, 557-561.                 | 0.2 | 0         |