
Giacomo Casella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2923566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular Vesicles Containing IL-4 Modulate Neuroinflammation in a Mouse Model of Multiple Sclerosis. Molecular Therapy, 2018, 26, 2107-2118.	8.2	93
2	Potential roles of extracellular vesicles in the pathophysiology, diagnosis, and treatment of autoimmune diseases. International Journal of Biological Sciences, 2020, 16, 620-632.	6.4	59
3	Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Science Translational Medicine, 2020, 12, .	12.4	54
4	Role of extracellular vesicles in neurodegenerative diseases. Progress in Neurobiology, 2021, 201, 102022.	5.7	41
5	A distinct GM-CSF ⁺ T helper cell subset requires T-bet to adopt a T _H 1 phenotype and promote neuroinflammation. Science Immunology, 2020, 5, .	11.9	33
6	Engineered extracellular vesicles encapsulated Bryostatin-1 as therapy for neuroinflammation. Nanoscale, 2022, 14, 2393-2410.	5.6	15
7	Generation of Oligodendrocyte Progenitor Cells From Mouse Bone Marrow Cells. Frontiers in Cellular Neuroscience, 2019, 13, 247.	3.7	12
8	CSF-1 maintains pathogenic but not homeostatic myeloid cells in the central nervous system during autoimmune neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111804119.	7.1	10
9	IFN-β Acts on Monocytes to Ameliorate CNS Autoimmunity by Inhibiting Proinflammatory Cross-Talk Between Monocytes and Th Cells. Frontiers in Immunology, 2021, 12, 679498.	4.8	8
10	Interferon-γ/Interleukin-27 Axis Induces Programmed Death Ligand 1 Expression in Monocyte-Derived Dendritic Cells and Restores Immune Tolerance in Central Nervous System Autoimmunity. Frontiers in Immunology, 2020, 11, 576752.	4.8	7
11	A serine protease inhibitor suppresses autoimmune neuroinflammation by activating the STING/IFN-β axis in macrophages. Cellular and Molecular Immunology, 2020, 17, 1278-1280.	10.5	7
12	CRISPR-mediated rapid generation of neural cell-specific knockout mice facilitates research in neurophysiology and pathology. Molecular Therapy - Methods and Clinical Development, 2021, 20, 755-764.	4.1	5
13	Transcription Factor RUNX3 Mediates Plasticity of ThGM Cells Toward Th1 Phenotype. Frontiers in Immunology, 0, 13, .	4.8	4
14	Primaquine elicits Foxp3+ regulatory T cells with a superior ability to limit CNS autoimmune inflammation. Journal of Autoimmunity, 2020, 114, 102505.	6.5	3
15	Chloroquine reduces Th17 cell differentiation by stimulating T-bet expression in T cells. Cellular and Molecular Immunology, 2021, 18, 779-780.	10.5	2
16	Comprehensive Analysis of the Immune and Stromal Compartments of the CNS in EAE Mice Reveal Pathways by Which Chloroquine Suppresses Neuroinflammation. Brain Sciences, 2020, 10, 348.	2.3	1