
Ksenia S Egorova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2922944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chemical Reviews, 2017, 117, 7132-7189.	23.0	1,201
2	Toxicity of Metal Compounds: Knowledge and Myths. Organometallics, 2017, 36, 4071-4090.	1.1	467
3	Toxicity of Ionic Liquids: Eco(cyto)activity as Complicated, but Unavoidable Parameter for Taskâ€Specific Optimization. ChemSusChem, 2014, 7, 336-360.	3.6	377
4	Which Metals are Green for Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au Salts. Angewandte Chemie - International Edition, 2016, 55, 12150-12162.	7.2	354
5	Carbohydrate structure database merged from bacterial, archaeal, plant and fungal parts. Nucleic Acids Research, 2016, 44, D1229-D1236.	6.5	158
6	"Solvent-in-salt―systems for design of new materials in chemistry, biology and energy research. Chemical Society Reviews, 2018, 47, 1250-1284.	18.7	151
7	Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. Journal of Molecular Liquids, 2018, 272, 271-300.	2.3	136
8	The B-type lamin is required for somatic repression of testis-specific gene clusters. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3282-3287.	3.3	120
9	Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. International Journal of Molecular Sciences, 2021, 22, 6793.	1.8	115
10	An unexpected increase of toxicity of amino acid-containing ionic liquids. Toxicology Research, 2015, 4, 152-159.	0.9	75
11	Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding. ACS Medicinal Chemistry Letters, 2015, 6, 1099-1104.	1.3	69
12	Welche Katalysatormetalle sind harmlos, welche giftig? Vergleich der ToxizitÃæn von Niâ€, Cuâ€, Feâ€, Pdâ€, Ptâ€, Rh―und Auâ€Salzen. Angewandte Chemie, 2016, 128, 12334-12347.	1.6	59
13	A novel organelle, the piNG-body, in the nuage of <i>Drosophila</i> male germ cells is associated with piRNA-mediated gene silencing. Molecular Biology of the Cell, 2011, 22, 3410-3419.	0.9	55
14	Lysine methylation of nonhistone proteins is a way to regulate their stability and function. Biochemistry (Moscow), 2010, 75, 535-548.	0.7	37
15	Ionic liquids in whole-cell biocatalysis: a compromise between toxicity and efficiency. Biophysical Reviews, 2018, 10, 881-900.	1.5	36
16	lonic liquids: prospects for nucleic acid handling and delivery. Nucleic Acids Research, 2021, 49, 1201-1234.	6.5	31
17	Glycoinformatics: Bridging Isolated Islands in the Sea of Data. Angewandte Chemie - International Edition, 2018, 57, 14986-14990.	7.2	29
18	Molecular Extraction of Peptides in Ionic Liquid Systems. ACS Sustainable Chemistry and Engineering, 2015, 3, 357-364.	3.2	27

KSENIA S EGOROVA

#	Article	IF	CITATIONS
19	Biomass-Derived Ionic Liquids Based on a 5-HMF Platform Chemical: Synthesis, Characterization, Biological Activity, and Tunable Interactions at the Molecular Level. ACS Sustainable Chemistry and Engineering, 2021, 9, 3552-3570.	3.2	27
20	Carbohydrate Structure Generalization Scheme for Database-Driven Simulation of Experimental Observables, Such as NMR Chemical Shifts. Journal of Chemical Information and Modeling, 2014, 54, 2594-2611.	2.5	26
21	Ionic Liquids As Tunable Toxicity Storage Media for Sustainable Chemical Waste Management. ACS Sustainable Chemistry and Engineering, 2018, 6, 719-726.	3.2	26
22	Direct Synthesis of Deuterium-Labeled O-, S-, N-Vinyl Derivatives from Calcium Carbide. Synthesis, 2019, 51, 3001-3013.	1.2	26
23	Nanoscale organization of ionic liquids and their interaction with peptides probed by 13C NMR spectroscopy. Tetrahedron, 2014, 70, 6075-6081.	1.0	24
24	Investigation of Cytotoxic Activity of Mitoxantrone at the Individual Cell Level by Using Ionic-Liquid-Tag-Enhanced Mass Spectrometry. Analytical Chemistry, 2017, 89, 13374-13381.	3.2	24
25	Expansion of coverage of Carbohydrate Structure Database (CSDB). Carbohydrate Research, 2014, 389, 112-114.	1.1	23
26	CSDB_GT: a new curated database on glycosyltransferases. Glycobiology, 2017, 27, 285-290.	1.3	22
27	A large-scale study of ionic liquids employed in chemistry and energy research to reveal cytotoxicity mechanisms and to develop a safe design guide. Green Chemistry, 2021, 23, 6414-6430.	4.6	22
28	Critical Analysis of CCSD Data Quality. Journal of Chemical Information and Modeling, 2012, 52, 2812-2814.	2.5	21
29	Facile Chemical Access to Biologically Active Norcantharidin Derivatives from Biomass. Molecules, 2017, 22, 2210.	1.7	21
30	Bacterial, Plant, and Fungal Carbohydrate Structure Databases: Daily Usage. Methods in Molecular Biology, 2015, 1273, 55-85.	0.4	18
31	Genetically Derepressed Nucleoplasmic Stellate Protein in Spermatocytes of D. melanogaster Interacts with the Catalytic Subunit of Protein Kinase 2 and Carries Histone-Like Lysine-Methylated Mark. Journal of Molecular Biology, 2009, 389, 895-906.	2.0	15
32	Micro-scale processes occurring in ionic liquid–water phases during extraction. Separation and Purification Technology, 2018, 196, 318-326.	3.9	15
33	Assessing possible influence of structuring effects in solution on cytotoxicity of ionic liquid systems. Journal of Molecular Liquids, 2020, 297, 111751.	2.3	15
34	Introducing toxâ€₽rofiles of Chemical Reactions. Angewandte Chemie - International Edition, 2020, 59, 22296-22305.	7.2	14
35	Promoter contribution to the testis-specific expression of Stellate gene family in Drosophila melanogaster. Gene, 2012, 499, 143-153.	1.0	12
36	Carbohydrate Structure Database: tools for statistical analysis of bacterial, plant and fungal glycomes. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav073.	1.4	12

KSENIA S EGOROVA

#	Article	IF	CITATIONS
37	Expanding CSDB_GT glycosyltransferase database with <i>Escherichia coli</i> . Glycobiology, 2019, 29, 285-287.	1.3	11
38	New Features of Carbohydrate Structure Database Notation (CSDB Linear), As Compared to Other Carbohydrate Notations. Journal of Chemical Information and Modeling, 2020, 60, 1276-1289.	2.5	11
39	Evaluation of phytotoxicity and cytotoxicity of industrial catalyst components (Fe, Cu, Ni, Rh and Pd): A case of lethal toxicity of a rhodium salt in terrestrial plants. Chemosphere, 2019, 223, 738-747.	4.2	10
40	Synergistic/antagonistic cytotoxic effects in mixtures of ionic liquids with doxorubicin or mitoxantrone. Journal of Molecular Liquids, 2021, 323, 114870.	2.3	7
41	Building bio-Profiles for common catalytic reactions. Green Chemistry, 2021, 23, 6373-6391.	4.6	7
42	CSDB_GT, a curated glycosyltransferase database with close-to-full coverage on three most studied nonanimal species. Glycobiology, 2021, 31, 524-529.	1.3	6
43	Comparative assessment of heterogeneous and homogeneous Suzuki-Miyaura catalytic reactions using bio-Profiles and bio-Factors. Journal of Organometallic Chemistry, 2022, 965-966, 122319.	0.8	6
44	Carbohydrate Structure Database (CSDB): new features. Russian Chemical Bulletin, 2015, 64, 1205-1210.	0.4	4
45	Biological Activity of Ionic Liquids Involving Ionic and Covalent Binding: Tunable Drug Development Platform. , 2019, , 1-8.		4
46	Source files of the Carbohydrate Structure Database: the way to sophisticated analysis of natural glycans. Scientific Data, 2022, 9, 131.	2.4	4
47	Mapping of cis-regulatory sites in the promoter of testis-specific Stellate genes of Drosophila melanogaster. Biochemistry (Moscow), 2012, 77, 1285-1293.	0.7	3
48	Carbohydrate Structure Database (CSDB): Examples of Usage. , 2017, , 75-113.		3
49	Merging structural frameworks of imidazolium, pyridinium, and cholinium ionic liquids with cinnamic acid to tune solution state behavior and properties. Journal of Molecular Liquids, 2022, 352, 118673.	2.3	3
50	Glykoinformatik: Brücken zwischen isolierten Inseln im Datenmeer. Angewandte Chemie, 2018, 130, 15202-15207.	1.6	0
51	Introducing toxâ€Profiles of Chemical Reactions. Angewandte Chemie, 2020, 132, 22480-22489.	1.6	0