
Mathias Meine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2922911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Refining success of cardiac resynchronization therapy using a simple score predicting the amount of reverse ventricular remodelling: results from the Markers and Response to CRT (MARC) study. Europace, 2018, 20, e1-e10.	0.7	131
2	Septal rebound stretch reflects the functional substrate to cardiac resynchronization therapy and predicts volumetric and neurohormonal response. European Journal of Heart Failure, 2009, 11, 863-871.	2.9	123
3	QRS Area Is a Strong Determinant of Outcome in Cardiac Resynchronization Therapy. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e006497.	2.1	69
4	Septal Rebound Stretch is a Strong Predictor of Outcome After Cardiac Resynchronization Therapy. Journal of Cardiac Failure, 2012, 18, 404-412.	0.7	44
5	Diseaseâ€specific health status as a predictor of mortality in patients with heart failure: a systematic literature review and metaâ€analysis of prospective cohort studies. European Journal of Heart Failure, 2014, 16, 384-393.	2.9	44
6	Comparison of strain imaging techniques in CRT candidates: CMR tagging, CMR feature tracking and speckle tracking echocardiography. International Journal of Cardiovascular Imaging, 2018, 34, 443-456.	0.7	38
7	Remote monitoring of implantable cardioverter defibrillators: Patient experiences and preferences for followâ€up. PACE - Pacing and Clinical Electrophysiology, 2019, 42, 120-129.	0.5	38
8	Effect of remote monitoring on patient-reported outcomes in European heart failure patients with an implantable cardioverter-defibrillator: primary results of the REMOTE-CIED randomized trial. Europace, 2019, 21, 1360-1368.	0.7	29
9	Echocardiographic Prediction of Cardiac Resynchronization Therapy Response Requires Analysis of Both Mechanical Dyssynchrony and Right Ventricular Function: A Combined Analysis ofÂPatient Data and Computer Simulations. Journal of the American Society of Echocardiography, 2017, 30, 1012-1020.e2.	1.2	25
10	Strain imaging to predict response to cardiac resynchronization therapy: a systematic comparison of strain parameters using multiple imaging techniques. ESC Heart Failure, 2018, 5, 1130-1140.	1.4	24
11	Association between brain natriuretic peptide, markers of inflammation and the objective and subjective response to cardiac resynchronization therapy. Brain, Behavior, and Immunity, 2014, 40, 211-218.	2.0	23
12	The concept of triple wavefront fusion during biventricular pacing: Using the EGM to produce the best acute hemodynamic improvement in CRT. PACE - Pacing and Clinical Electrophysiology, 2017, 40, 873-882.	0.5	22
13	Can We Use the Intrinsic Left Ventricular Delay (QLV) to Optimize the Pacing Configuration for Cardiac Resynchronization Therapy With a Quadripolar Left Ventricular Lead?. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e005912.	2.1	22
14	Prevalence and risk markers of early psychological distress after ICD implantation in the European REMOTE-CIED study cohort. International Journal of Cardiology, 2017, 240, 208-213.	0.8	20
15	Comparison of strain parameters in dyssynchronous heart failure between speckle tracking echocardiography vendor systems. Cardiovascular Ultrasound, 2017, 15, 25.	0.5	20
16	Reduction in the QRS area after cardiac resynchronization therapy is associated with survival and echocardiographic response. Journal of Cardiovascular Electrophysiology, 2021, 32, 813-822.	0.8	20
17	Quadripolar Leads in CardiacÂResynchronization Therapy. JACC: Clinical Electrophysiology, 2015, 1, 225-237.	1.3	19
18	Pressure-Volume Loop Analysis of Multipoint Pacing With a Quadripolar LeftÂVentricular Lead in Cardiac Resynchronization Therapy. JACC: Clinical Electrophysiology, 2018, 4, 881-889.	1.3	18

MATHIAS MEINE

#	Article	IF	CITATIONS
19	Effect of remote monitoring on clinical outcomes in European heart failure patients with an implantable cardioverter-defibrillator: secondary results of the REMOTE-CIED randomized trial. Europace, 2022, 24, 256-267.	0.7	18
20	Optimizing lead placement for pacing in dyssynchronous heart failure: The patient in the lead. Heart Rhythm, 2021, 18, 1024-1032.	0.3	17
21	Beat-to-beat variations in activation-recovery interval derived from the right ventricular electrogram can monitor arrhythmic risk under anesthetic and awake conditions in the canine chronic atrioventricular block model. Heart Rhythm, 2018, 15, 442-448.	0.3	16
22	Evaluating Electrocardiography-Based Identification of Cardiac Resynchronization Therapy Responders Beyond Current LeftÂBundle Branch Block Definitions. JACC: Clinical Electrophysiology, 2020, 6, 193-203.	1.3	16
23	Multimodality imaging for real-time image-guided left ventricular lead placement during cardiac resynchronization therapy implantations. International Journal of Cardiovascular Imaging, 2019, 35, 1327-1337.	0.7	15
24	Strategies to Improve Selection ofÂPatients Without Typical LeftÂBundleÂBranch Block for CardiacÂResynchronization Therapy. JACC: Clinical Electrophysiology, 2020, 6, 129-142.	1.3	15
25	Hemodynamic Optimization in CardiacÂResynchronization Therapy. JACC: Clinical Electrophysiology, 2019, 5, 1013-1025.	1.3	14
26	The value of septal rebound stretch analysis for the prediction of volumetric response to cardiac resynchronization therapy. European Heart Journal Cardiovascular Imaging, 2021, 22, 37-45.	0.5	14
27	Regional Left Ventricular Electrical Activation and Peak Contraction Are Closely Related in Candidates for CardiacÂResynchronization Therapy. JACC: Clinical Electrophysiology, 2017, 3, 854-862.	1.3	12
28	Pacing therapy for atrioventricular dromotropathy: a combined computational–experimental–clinical study. Europace, 2022, 24, 784-795.	0.7	12
29	Shortâ€Term Variability of the QT Interval Can be Used for the Prediction of Imminent Ventricular Arrhythmias in Patients With Primary Prophylactic Implantable Cardioverter Defibrillators. Journal of the American Heart Association, 2020, 9, e018133.	1.6	10
30	Acute recoordination rather than functional hemodynamic improvement determines reverse remodelling by cardiac resynchronisation therapy. International Journal of Cardiovascular Imaging, 2021, 37, 1903-1911.	0.7	10
31	Volumetric Response beyond Six Months of Cardiac Resynchronization Therapy and Clinical Outcome. PLoS ONE, 2015, 10, e0124323.	1.1	10
32	Life-threatening ventricular arrhythmia prediction in patients with dilated cardiomyopathy using explainable electrocardiogram-based deep neural networks. Europace, 2022, 24, 1645-1654.	0.7	10
33	Fully automated QRS area measurement for predicting response to cardiac resynchronization therapy. Journal of Electrocardiology, 2020, 63, 159-163.	0.4	9
34	Heart Size Corrected Electrical Dyssynchrony and Its Impact on Sex-Specific Response to Cardiac Resynchronization Therapy. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e008452.	2.1	9
35	Electrophysiological measurements that can explain and guide temporary accelerated pacing to avert (re)occurrence of torsade de pointes arrhythmias in the canine chronic atrioventricular block model. Heart Rhythm, 2017, 14, 749-756.	0.3	8
36	Atrioventricular optimization in cardiac resynchronization therapy with quadripolar leads: should we optimize every pacing configuration including multi-point pacing?. Europace, 2019, 21, e11-e19.	0.7	8

MATHIAS MEINE

#	Article	IF	CITATIONS
37	High-rate pacing guided by short-term variability of repolarization prevents imminent ventricular arrhythmias automatically by an implantable cardioverter-defibrillator in the chronic atrioventricular block dog model. Heart Rhythm, 2020, 17, 2078-2085.	0.3	7
38	Decreased Quality of Life Due to Driving Restrictions After Cardioverter Defibrillator Implantation. Journal of Cardiovascular Nursing, 2018, 33, 474-480.	0.6	6
39	Advanced image-supported lead placement in cardiac resynchronisation therapy: protocol for the multicentre, randomised controlled ADVISE trial and early economic evaluation. BMJ Open, 2021, 11, e054115.	0.8	6
40	Does mechanical dyssynchrony in addition to QRS area ensure sustained response to cardiac resynchronization therapy?. European Heart Journal Cardiovascular Imaging, 2022, 23, 1628-1635.	0.5	6
41	Patient-reported causes of heart failure in a large European sample. International Journal of Cardiology, 2018, 258, 179-184.	0.8	3
42	3D Hybrid Imaging for Structural and Congenital Heart Interventions in the Cath Lab. Structural Heart, 2018, 2, 362-371.	0.2	3
43	Segment length in cine (SLICE) strain analysis: a practical approach to estimate potential benefit from cardiac resynchronization therapy. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 4.	1.6	3
44	Aetiology of Heart Failure, Rather than Sex, Determines Reverse LV Remodelling Response to CRT. Journal of Clinical Medicine, 2021, 10, 5513.	1.0	3
45	Comment on the article by Trolese T et al Europace, 2015, 17, 999-999.	0.7	2
46	Association of ECG characteristics with clinical and echocardiographic outcome to CRT in a non-LBBB patient population. Journal of Interventional Cardiac Electrophysiology, 2021, 62, 9-19.	0.6	2
47	Evaluation of a Fully Automatic Measurement of Short-Term Variability of Repolarization on Intracardiac Electrograms in the Chronic Atrioventricular Block Dog. Frontiers in Physiology, 2020, 11, 1005.	1.3	2
48	16-68: Right ventricular dysfunction complicates prediction of response to cardiac resynchronization therapy by mechanical dyssynchrony parameters: combined clinical-modeling approach. Europace, 2016, 18, i17-i17.	0.7	0