Nenad M Markovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2922681/publications.pdf

Version: 2024-02-01

50 papers

14,211 citations

94381 37 h-index 59 g-index

63 all docs 63
docs citations

63 times ranked

15612 citing authors

#	Article	IF	CITATIONS
1	Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Materials, 2012, 11, 550-557.	13.3	2,423
2	Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li ⁺ -Ni(OH) ₂ -Pt Interfaces. Science, 2011, 334, 1256-1260.	6.0	2,385
3	Energy and fuels from electrochemical interfaces. Nature Materials, 2017, 16, 57-69.	13.3	1,484
4	Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nature Materials, 2016, 15, 197-203.	13.3	825
5	Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments. Journal of Physical Chemistry Letters, 2014, 5, 2474-2478.	2.1	569
6	Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nature Energy, 2020, 5, 222-230.	19.8	540
7	Surfactant Removal for Colloidal Nanoparticles from Solution Synthesis: The Effect on Catalytic Performance. ACS Catalysis, 2012, 2, 1358-1362.	5 . 5	426
8	High-Performance Rh ₂ P Electrocatalyst for Efficient Water Splitting. Journal of the American Chemical Society, 2017, 139, 5494-5502.	6.6	343
9	Using Surface Segregation To Design Stable Ruâ€ŀr Oxides for the Oxygen Evolution Reaction in Acidic Environments. Angewandte Chemie - International Edition, 2014, 53, 14016-14021.	7.2	331
10	Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nature Communications, 2014, 5, 4191.	5.8	252
11	Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts. Nature Communications, 2017, 8, 1449.	5.8	250
12	The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy and Environmental Science, 2012, 5, 9246.	15.6	224
13	Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse Pt _{<i>x</i>} Ni _{1â€<i>x</i>} Nanoparticles. Advanced Functional Materials, 2011, 21, 147-152.	7.8	218
14	Dopantâ€Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal. Advanced Energy Materials, 2019, 9, 1803440.	10.2	217
15	Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy and Environmental Science, 2014, 7, 4061-4069.	15.6	205
16	Atomic Structure of Pt ₃ Ni Nanoframe Electrocatalysts by <i>iin Situ</i> X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2015, 137, 15817-15824.	6.6	197
17	Relationships between Atomic Level Surface Structure and Stability/Activity of Platinum Surface Atoms in Aqueous Environments. ACS Catalysis, 2016, 6, 2536-2544.	5.5	196
18	Monodisperse Pt ₃ Co Nanoparticles as a Catalyst for the Oxygen Reduction Reaction: Size-Dependent Activity. Journal of Physical Chemistry C, 2009, 113, 19365-19368.	1.5	192

#	Article	IF	CITATIONS
19	Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries. ACS Nano, 2015, 9, 8194-8205.	7.3	181
20	Stabilization of ultrathin (hydroxy) oxide films on transition metal substrates for electrochemical energy conversion. Nature Energy, $2017, 2, .$	19.8	167
21	Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts. Journal of the American Chemical Society, 2017, 139, 11678-11681.	6.6	166
22	Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing. Nature Communications, 2015, 6, 8925.	5.8	159
23	Dynamically Stable Active Sites from Surface Evolution of Perovskite Materials during the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2021, 143, 2741-2750.	6.6	156
24	Electrocatalysis of the HER in acid and alkaline media. Journal of the Serbian Chemical Society, 2013, 78, 2007-2015.	0.4	141
25	Electrocatalytic transformation of HF impurity to H2 and LiF in lithium-ion batteries. Nature Catalysis, 2018, 1, 255-262.	16.1	128
26	Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. Nature Materials, 2020, 19, 1207-1214.	13.3	127
27	Synthesis of Homogeneous Pt-Bimetallic Nanoparticles as Highly Efficient Electrocatalysts. ACS Catalysis, 2011, 1, 1355-1359.	5.5	124
28	Selective electrocatalysis imparted by metal–insulator transition for durability enhancement of automotive fuel cells. Nature Catalysis, 2020, 3, 639-648.	16.1	79
29	Double layer effects in electrocatalysis: The oxygen reduction reaction and ethanol oxidation reaction on Au $(1\ 1\ 1)$, Pt $(1\ 1\ 1)$ and Ir $(1\ 1\ 1)$ in alkaline media containing Na and Li cations. Catalysis Today, 2016, 262, 41-47.	2.2	67
30	Evidence for Decoupled Electron and Proton Transfer in the Electrochemical Oxidation of Ammonia on Pt(100). Journal of Physical Chemistry Letters, 2016, 7, 387-392.	2.1	57
31	Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 509-532.	3.3	46
32	Electrokinetic Analysis of Poorly Conductive Electrocatalytic Materials. ACS Catalysis, 2020, 10, 4990-4996.	5. 5	43
33	Ultrafine Pt cluster and RuO ₂ heterojunction anode catalysts designed for ultra-low Pt-loading anion exchange membrane fuel cells. Nanoscale Horizons, 2020, 5, 316-324.	4.1	34
34	Employing the Dynamics of the Electrochemical Interface in Aqueous Zincâ€lon Battery Cathodes. Advanced Functional Materials, 2021, 31, 2102135.	7.8	34
35	Tuning the Selectivity and Activity of Electrochemical Interfaces with Defective Graphene Oxide and Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2019, 11, 34517-34525.	4.0	29
36	Improved Rate for the Oxygen Reduction Reaction in a Sulfuric Acid Electrolyte using a Pt(111) Surface Modified with Melamine. ACS Applied Materials & Interfaces, 2021, 13, 3369-3376.	4.0	29

#	Article	lF	Citations
37	When Small is Big: The Role of Impurities in Electrocatalysis. Topics in Catalysis, 2015, 58, 1174-1180.	1.3	26
38	The role of an interface in stabilizing reaction intermediates for hydrogen evolution in aprotic electrolytes. Chemical Science, 2020, 11, 3914-3922.	3.7	23
39	Thin Film Approach to Single Crystalline Electrochemistry. Journal of Physical Chemistry C, 2013, 117, 23790-23796.	1.5	22
40	Real-Time Monitoring of Cation Dissolution/Deintercalation Kinetics from Transition-Metal Oxides in Organic Environments. Journal of Physical Chemistry Letters, 2018, 9, 4935-4940.	2.1	15
41	Increasing Ionic Conductivity of Poly(ethylene oxide) by Reaction with Metallic Li. Advanced Energy and Sustainability Research, 2022, 3, 2100142.	2.8	15
42	Cover Picture: Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure (Angew. Chem. Int. Ed. 18/2006). Angewandte Chemie - International Edition, 2006, 45, 2815-2815.	7.2	12
43	Fundamental Insights from a Singleâ€Crystal Sodium Iridate Battery. Advanced Energy Materials, 2020, 10, 1903128.	10.2	9
44	Single crystalline thin films as a novel class of electrocatalysts. Journal of the Serbian Chemical Society, 2013, 78, 1689-1702.	0.4	3
45	Active electrochemical interfaces stabilized through self-organized potential oscillations. Electrochemistry Communications, 2020, 121, 106853.	2.3	3
46	Electrochemistry at Well-Characterized Bimetallic Surfaces., 0,, 245-269.		2
47	The Future of Electrochemistry. Electrochemistry, 2018, 86, 203-203.	0.6	1
48	Identical Location STEM analysis on La _{1â^'x} Sr _x CoO ₃ Oxygen-Evolution Catalysts. Microscopy and Microanalysis, 2019, 25, 2052-2053.	0.2	1
49	Theoretical evidence of water serving as a promoter for lithium superoxide disproportionation in Li–O ₂ batteries. Physical Chemistry Chemical Physics, 2021, 23, 10440-10447.	1.3	1
50	Frontispiece: Using Surface Segregation To Design Stable Ru-Ir Oxides for the Oxygen Evolution Reaction in Acidic Environments. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	7.2	0