Dirk Springael

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2922204/publications.pdf

Version: 2024-02-01

38660 62479 7,671 161 50 80 citations g-index h-index papers 167 167 167 7292 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Isolation of Adherent Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Bacteria Using PAH-Sorbing Carriers. Applied and Environmental Microbiology, 2000, 66, 1834-1843.	1.4	359
2	The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Current Opinion in Biotechnology, 2003, 14, 262-269.	3.3	289
3	Occurrence and Phylogenetic Diversity of Sphingomonas Strains in Soils Contaminated with Polycyclic Aromatic Hydrocarbons. Applied and Environmental Microbiology, 2004, 70, 1944-1955.	1.4	276
4	DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. Journal of Microbiological Methods, 2006, 66, 194-205.	0.7	275
5	Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?. Water Research, 2013, 47, 5955-5976.	5.3	275
6	Biodegradation: Updating the Concepts of Control for Microbial Cleanup in Contaminated Aquifers. Environmental Science & Envir	4.6	211
7	Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. Trends in Microbiology, 2004, 12, 53-58.	3.5	160
8	Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiology Ecology, 2002, 42, 199-208.	1.3	153
9	Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene, 1999, 238, 417-425.	1.0	140
10	Distribution of the Mycobacterium community and polycyclic aromatic hydrocarbons (PAHs) among different size fractions of a long-term PAH-contaminated soil. Environmental Microbiology, 2006, 8, 836-847.	1.8	139
11	Chromosomal Integration, Tandem Amplification, and Deamplification in <i>Pseudomonas putida</i> F1 of a 105-Kilobase Genetic Element Containing the Chlorocatechol Degradative Genes from <i>Pseudomonas</i> sp. Strain B13. Journal of Bacteriology, 1998, 180, 4360-4369.	1.0	139
12	Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. ISME Journal, 2009, 3, 916-923.	4.4	138
13	Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	136
14	Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Research in Microbiology, 2003, 154, 199-206.	1.0	135
15	Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil. Applied Microbiology and Biotechnology, 2005, 66, 726-736.	1.7	133
16	Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: Distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. Journal of Microbiological Methods, 2006, 64, 250-265.	0.7	120
17	Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems. Water Research, 2005, 39, 3531-3540.	5.3	109
18	The Biphenyl- and 4-Chlorobiphenyl-Catabolic Transposon Tn 4371, a Member of a New Family of Genomic Islands Related to IncP and Ti Plasmids. Applied and Environmental Microbiology, 2003, 69, 4837-4845.	1.4	101

#	Article	IF	Citations
19	Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Research in Microbiology, 2001, 152, 861-872.	1.0	96
20	Overview of on-farm bioremediation systems to reduce the occurrence of point source contamination. Pest Management Science, 2007, 63, 111-128.	1.7	96
21	Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons. FEMS Microbiology Ecology, 2005, 51, 375-388.	1.3	86
22	Competition for Sorption and Degradation of Chlorinated Ethenes in Batch Zero-Valent Iron Systems. Environmental Science & Env	4.6	85
23	Dynamics of an Oligotrophic Bacterial Aquifer Community during Contact with a Groundwater Plume Contaminated with Benzene, Toluene, Ethylbenzene, and Xylenes: an In Situ Mesocosm Study. Applied and Environmental Microbiology, 2005, 71, 3815-3825.	1.4	84
24	Degradation of Anthracene by Mycobacterium sp. Strain LB501T Proceeds via a Novel Pathway, through o -Phthalic Acid. Applied and Environmental Microbiology, 2003, 69, 186-190.	1.4	81
25	Amplified rDNA Restriction Analysis and Further Genotypic Characterisation of Metal-Resistant Soil Bacteria and Related Facultative Hydrogenotrophs. Systematic and Applied Microbiology, 1999, 22, 258-268.	1.2	78
26	Physiological and Transcriptome Response of the Polycyclic Aromatic Hydrocarbon Degrading <i>Novosphingobium</i> sp. LH128 after Inoculation in Soil. Environmental Science &	4.6	78
27	Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil. Environmental Microbiology, 2006, 8, 2170-2178.	1.8	77
28	Abiotic and Biotic Processes Governing the Fate of Phenylurea Herbicides in Soils: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 1947-1998.	6.6	77
29	Characterization of novel linuron-mineralizing bacterial consortia enriched from long-term linuron-treated agricultural soils. FEMS Microbiology Ecology, 2007, 62, 374-385.	1.3	76
30	Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation, 2014, 25, 543-556.	1.5	73
31	Zinc Toxicity to Nitrification in Soil and Soilless Culture Can Be Predicted with the Same Biotic Ligand Model. Environmental Science & Environmental	4.6	72
32	Influence of Soil Components on the Transport of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria through Saturated Porous Media. Environmental Science & Environmental Science & 2000, 34, 3649-3656.	4.6	70
33	A Novel Hydrolase Identified by Genomic-Proteomic Analysis of Phenylurea Herbicide Mineralization by Variovorax sp. Strain SRS16. Applied and Environmental Microbiology, 2011, 77, 8754-8764.	1.4	70
34	Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river. Scientific Reports, 2015, 5, 17284.	1.6	70
35	Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR–DGGE fingerprinting. FEMS Microbiology Ecology, 2004, 50, 37-50.	1.3	68
36	Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. Environmental Microbiology, 2004, 6, 1123-1136.	1.8	67

#	Article	IF	Citations
37	Combined Removal of Chlorinated Ethenes and Heavy Metals by Zerovalent Iron in Batch and Continuous Flow Column Systems. Environmental Science & Environmental Science & 2005, 39, 8460-8465.	4.6	66
38	Positive Impact of Microorganisms on the Performance of Laboratory-Scale Permeable Reactive Iron Barriers. Environmental Science & Environmental Scien	4.6	66
39	Sorption characteristics of pesticides on matrix substrates used in biopurification systems. Chemosphere, 2009, 75, 100-108.	4.2	66
40	Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron. FEMS Microbiology Ecology, 2008, 64, 271-282.	1.3	61
41	Effect of a Nonionic Surfactant on Biodegradation of Slowly Desorbing PAHs in Contaminated Soils. Environmental Science & Envi	4.6	61
42	Shifts in Abundance and Diversity of Mobile Genetic Elements after the Introduction of Diverse Pesticides into an On-Farm Biopurification System over the Course of a Year. Applied and Environmental Microbiology, 2014, 80, 4012-4020.	1.4	60
43	Sorption kinetics and its effects on retention and leaching. Chemosphere, 2008, 72, 509-516.	4.2	58
44	Community shifts in a seeded 3-chlorobenzoate degrading membrane biofilm reactor: indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminant bacteria. Environmental Microbiology, 2002, 4, 70-80.	1.8	57
45	Fate of <i>Escherichia coli</i> O157:H7 and <i>Salmonella enterica</i> in the manure-amended soil-plant ecosystem of fresh vegetable crops: A review. Critical Reviews in Microbiology, 2015, 41, 273-294.	2.7	57
46	Tn4371:A Modular Structure Encoding a Phage-like Integrase, aPseudomonas-like Catabolic Pathway, and RP4/Ti-like Transfer Functions. Plasmid, 1999, 41, 40-54.	0.4	56
47	Characterization of Cultures Enriched from Acidic Polycyclic Aromatic Hydrocarbon-Contaminated Soil for Growth on Pyrene at Low pH. Applied and Environmental Microbiology, 2007, 73, 3159-3164.	1.4	56
48	Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2. Applied Microbiology and Biotechnology, 2014, 98, 8235-8252.	1.7	55
49	Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions. FEMS Microbiology Letters, 2011, 315, 6-16.	0.7	53
50	Improvement of pesticide mineralization in on-farm biopurification systems by bioaugmentation with pesticide-primed soil. FEMS Microbiology Ecology, 2011, 76, 64-73.	1.3	53
51	PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiology Ecology, 2006, 55, 262-273.	1.3	52
52	Stimulated activity of the soil nitrifying community accelerates community adaptation to Zn stress. Soil Biology and Biochemistry, 2010, 42, 766-772.	4.2	49
53	Application of biodegradation in mitigating and remediating pesticide contamination of freshwater resources: state of the art and challenges for optimization. Applied Microbiology and Biotechnology, 2016, 100, 7361-7376.	1.7	49
54	Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol. Environmental Microbiology, 2017, 19, 968-981.	1.8	47

#	Article	IF	CITATIONS
55	Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems. FEMS Microbiology Ecology, 2004, 49, 121-128.	1.3	44
56	Comparison of mineralization of solid-sorbed phenanthrene by polycyclic aromatic hydrocarbon (PAH)-degrading Mycobacterium spp. and Sphingomonas spp Applied Microbiology and Biotechnology, 2006, 72, 829-836.	1.7	42
57	Proteomic study of linuron and 3,4-dichloroaniline degradation by Variovorax sp. WDL1: evidence for the involvement of an aniline dioxygenase-related multicomponent protein. Research in Microbiology, 2010, 161, 208-218.	1.0	42
58	High prevalence of IncP-1 plasmids and IS <i>1071</i> ii>insertion sequences in on-farm biopurification systems and other pesticide-polluted environments. FEMS Microbiology Ecology, 2013, 86, 415-431.	1.3	41
59	Characterizing pesticide sorption and degradation in microscale biopurification systems using column displacement experiments. Environmental Pollution, 2009, 157, 463-473.	3.7	40
60	Biocarriers Improve Bioaugmentation Efficiency of a Rapid Sand Filter for the Treatment of 2,6-Dichlorobenzamide-Contaminated Drinking Water. Environmental Science & Environm	4.6	40
61	Influence of phenanthrene and fluoranthene on the degradation of fluorene and glucose by Sphingomonas sp. strain LB126 in chemostat cultures. FEMS Microbiology Ecology, 2003, 46, 105-111.	1.3	37
62	Small-scale oxygen distribution determines the vinyl chloride biodegradation pathway in surficial sediments of riverbed hyporheic zones. FEMS Microbiology Ecology, 2013, 84, 133-142.	1.3	37
63	Impact of Microbial Activities on the Mineralogy and Performance of Column-Scale Permeable Reactive Iron Barriers Operated under Two Different Redox Conditions. Environmental Science & Samp; Technology, 2007, 41, 5724-5730.	4.6	35
64	Dynamics of the nitrous oxide reducing community during adaptation to Zn stress in soil. Soil Biology and Biochemistry, 2010, 42, 1581-1587.	4.2	34
65	Functional Redundancy of Linuron Degradation in Microbial Communities in Agricultural Soil and Biopurification Systems. Applied and Environmental Microbiology, 2016, 82, 2843-2853.	1.4	33
66	Targeted metagenomics demonstrates the ecological role of IS <i>1071</i> in bacterial community adaptation to pesticide degradation. Environmental Microbiology, 2018, 20, 4091-4111.	1.8	32
67	Occurrence of Tn 4371 -Related Mobile Elements and Sequences in (Chloro)biphenyl-Degrading Bacteria. Applied and Environmental Microbiology, 2001, 67, 42-50.	1.4	31
68	Effect of bioaugmentation and supplementary carbon sources on degradation of polycyclic aromatic hydrocarbons by a soil-derived culture. FEMS Microbiology Ecology, 2006, 55, 122-135.	1.3	31
69	Isolation and identification of culturable bacteria, capable of heterotrophic growth, from rapid sand filters of drinking water treatment plants. Research in Microbiology, 2017, 168, 594-607.	1.0	31
70	Response of the bacterial community in an on-farm biopurification system, to which diverse pesticides are introduced over an agricultural season. Environmental Pollution, 2017, 229, 854-862.	3.7	31
71	Cultivation-Independent Screening Revealed Hot Spots of IncP-1, IncP-7 and IncP-9 Plasmid Occurrence in Different Environmental Habitats. PLoS ONE, 2014, 9, e89922.	1.1	31
72	A transcriptional luxAB reporter fusion responding to fluorene in Sphingomonas sp. LB126 and its initial characterisation for whole-cell bioreporter purposes. Research in Microbiology, 2001, 152, 849-859.	1.0	30

#	Article	IF	CITATIONS
73	Factors Determining the Attenuation of Chlorinated Aliphatic Hydrocarbons in Eutrophic River Sediment Impacted by Discharging Polluted Groundwater. Environmental Science & En	4.6	30
74	Variovorax spmediated biodegradation of the phenyl urea herbicide linuron at micropollutant concentrations and effects of natural dissolved organic matter as supplementary carbon source. Applied Microbiology and Biotechnology, 2013, 97, 9837-9846.	1.7	29
75	Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources. Journal of Contaminant Hydrology, 2014, 157, 25-36.	1.6	29
76	A molecular toolbox to estimate the number and diversity of Variovorax in the environment: application in soils treated with the phenylurea herbicide linuron. FEMS Microbiology Ecology, 2011, 76, 14-25.	1.3	28
77	Identification of the Amidase BbdA That Initiates Biodegradation of the Groundwater Micropollutant 2,6-dichlorobenzamide (BAM) in <i>Aminobacter</i> sp. MSH1. Environmental Science & Eamp; Technology, 2015, 49, 11703-11713.	4.6	28
78	Nonylphenol ethoxylates biodegradation increases estrogenicity of textile wastewater in biological treatment systems. Water Research, 2020, 184, 116137.	5. 3	28
79	Transfer and expression of PCB-degradative genes into heavy metal resistantAlcaligenes eutrophus strains. Biodegradation, 1994, 5, 343-357.	1.5	27
80	Robust Linuron Degradation in On-Farm Biopurification Systems Exposed to Sequential Environmental Changes. Applied and Environmental Microbiology, 2011, 77, 6614-6621.	1.4	27
81	Environmental Dissolved Organic Matter Governs Biofilm Formation and Subsequent Linuron Degradation Activity of a Linuron-Degrading Bacterial Consortium. Applied and Environmental Microbiology, 2013, 79, 4534-4542.	1.4	27
82	Resistance and resilience of zinc tolerant nitrifying communities is unaffected in long-term zinc contaminated soils. Soil Biology and Biochemistry, 2007, 39, 1828-1831.	4.2	26
83	Exposure to Solute Stress Affects Genome-Wide Expression but Not the Polycyclic Aromatic Hydrocarbon-Degrading Activity of Sphingomonas sp. Strain LH128 in Biofilms. Applied and Environmental Microbiology, 2012, 78, 8311-8320.	1.4	26
84	Surface motility of polycyclic aromatic hydrocarbon (PAH)-degrading mycobacteria. Research in Microbiology, 2008, 159, 255-262.	1.0	25
85	Assessment of the Intrinsic Bioremediation Capacity of an Eutrophic River Sediment Polluted by Discharging Chlorinated Aliphatic Hydrocarbons: A Compound-Specific Isotope Approach. Environmental Science & Environmental Sci	4.6	25
86	Physiology and transcriptome of the polycyclic aromatic hydrocarbon-degrading Sphingomonas sp. LH128 after long-term starvation. Microbiology (United Kingdom), 2013, 159, 1807-1817.	0.7	25
87	Transport and degradation of metalaxyl and isoproturon in biopurification columns inoculated with pesticide-primed material. Chemosphere, 2010, 78, 56-60.	4.2	24
88	Temporal variations in natural attenuation of chlorinated aliphatic hydrocarbons in eutrophic river sediments impacted by a contaminated groundwater plume. Water Research, 2012, 46, 1873-1888.	5.3	24
89	Expanded insecticide catabolic activity gained by a single nucleotide substitution in a bacterial carbamate hydrolase gene. Environmental Microbiology, 2016, 18, 4878-4887.	1.8	23
90	Geochemical Parameters and Reductive Dechlorination Determine Aerobic Cometabolic vs Aerobic Metabolic Vinyl Chloride Biodegradation at Oxic/Anoxic Interface of Hyporheic Zones. Environmental Science & Environmental Environmental Science & Environmental Envi	4.6	23

#	Article	IF	CITATIONS
91	Dynamics of the Linuron Hydrolase <i>libA</i> Gene Pool Size in Response to Linuron Application and Environmental Perturbations in Agricultural Soil and On-Farm Biopurification Systems. Applied and Environmental Microbiology, 2012, 78, 2783-2789.	1.4	22
92	Biofilm formation of a bacterial consortium on linuron at micropollutant concentrations in continuous flow chambers and the impact of dissolved organic matter. FEMS Microbiology Ecology, 2014, 88, 184-194.	1.3	22
93	Establishment of multiple pesticide biodegradation capacities from pesticideâ€primed materials in onâ€farm biopurification system microcosms treating complex pesticideâ€contaminated wastewater. Pest Management Science, 2015, 71, 986-995.	1.7	22
94	Exploring the complex response to linuron of bacterial communities from biopurification systems by means of cultivation-independent methods. FEMS Microbiology Ecology, 2016, 92, fiv157.	1.3	22
95	Differential Responses of Eubacterial, <i>Mycobacterium</i> , and <i>Sphingomonas</i> Communities in Polycyclic Aromatic Hydrocarbon (PAH)â€Contaminated Soil to Artificially Induced Changes in PAH Profile. Journal of Environmental Quality, 2007, 36, 1403-1411.	1.0	21
96	Characterizing pesticide sorption and degradation in macro scale biopurification systems using column displacement experiments. Environmental Pollution, 2009, 157, 1373-1381.	3.7	21
97	Mineralization of the Common Groundwater Pollutant 2,6-Dichlorobenzamide (BAM) and its Metabolite 2,6-Dichlorobenzoic Acid (2,6-DCBA) in Sand Filter Units of Drinking Water Treatment Plants. Environmental Science & Echnology, 2016, 50, 10114-10122.	4.6	21
98	Surface Colonization and Activity of the 2,6-Dichlorobenzamide (BAM) Degrading <i>Aminobacter</i> sp. Strain MSH1 at Macro- and Micropollutant BAM Concentrations. Environmental Science & Environmenta	4.6	21
99	Comparative Genomics Suggests Mechanisms of Genetic Adaptation toward the Catabolism of the Phenylurea Herbicide Linuron in Variovorax. Genome Biology and Evolution, 2020, 12, 827-841.	1.1	21
100	Inverse modeling of pesticide degradation and pesticide-degrading population size dynamics in a bioremediation system: Parameterizing the Monod model. Chemosphere, 2009, 75, 726-731.	4.2	20
101	Rhizosphere effect on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure-amended soil during cabbage (Brassica oleracea) cultivation under tropical field conditions in Sub-Saharan Africa. International Journal of Food Microbiology, 2011, 149, 133-142.	2.1	20
102	Minimal pesticide-primed soil inoculum density to secure maximum pesticide degradation efficiency in on-farm biopurification systems. Chemosphere, 2012, 88, 1114-1118.	4.2	20
103	Dechlorination of three tetrachlorobenzene isomers by contaminated harbor sludge-derived enrichment cultures follows thermodynamically favorable reactions. Applied Microbiology and Biotechnology, 2017, 101, 2589-2601.	1.7	20
104	Catabolic task division between two near-isogenic subpopulations co-existing in a herbicide-degrading bacterial consortium: consequences for the interspecies consortium metabolic model. Environmental Microbiology, 2018, 20, 85-96.	1.8	19
105	Culture-Independent Analysis of Linuron-Mineralizing Microbiota and Functions in on-Farm Biopurification Systems via DNA-Stable Isotope Probing: Comparison with Enrichment Culture. Environmental Science & Technology, 2020, 54, 9387-9397.	4.6	19
106	Cooperative dissolved organic carbon assimilation by a linuron-degrading bacterial consortium. FEMS Microbiology Ecology, 2013, 84, 35-46.	1.3	18
107	Carbon source utilization profiles suggest additional metabolic interactions in a synergistic linuron-degrading bacterial consortium. FEMS Microbiology Ecology, 2013, 84, 24-34.	1.3	18
108	Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons. FEMS Microbiology Ecology, 2014, 87, 715-732.	1.3	18

#	Article	IF	Citations
109	Transport and degradation of pesticides in a biopurification system under variable flux, part I: A microcosm study. Environmental Pollution, 2010, 158, 3309-3316.	3.7	17
110	Diversity of dechlorination pathways and organohalide respiring bacteria in chlorobenzene dechlorinating enrichment cultures originating from river sludge. Biodegradation, 2014, 25, 757-776.	1.5	17
111	Draft Genome Sequence of the Carbofuran-Mineralizing <i>Novosphingobium</i> Sp. Strain KN65.2. Genome Announcements, 2015, 3, .	0.8	17
112	Effects of dissolved organic matter (DOM) at environmentally relevant carbon concentrations on atrazine degradation by Chelatobacter heintzii SalB. Applied Microbiology and Biotechnology, 2012, 95, 1333-1341.	1.7	16
113	Co-tolerance to zinc and copper of the soil nitrifying community and its relationship with the community structure. Soil Biology and Biochemistry, 2012, 44, 75-80.	4.2	16
114	Characterization of a collection of plasmid-containing bacteria isolated from an on-farm biopurification system used for pesticide removal. Plasmid, 2015, 80, 16-23.	0.4	16
115	Soil-Bacterium Compatibility Model as a Decision-Making Tool for Soil Bioremediation. Environmental Science & Environmental Sc	4.6	16
116	LONG-TERM EXPOSURE TO ENVIRONMENTALLY RELEVANT DOSES OF METHYLâ€TERT-BUTYL ETHER CAUSES SIGNIFICANT REPRODUCTIVE DYSFUNCTION IN THE ZEBRAFISH (DANIO RERIO). Environmental Toxicology and Chemistry, 2006, 25, 2388.	2.2	15
117	A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid. Chemosphere, 2011, 83, 991-996.	4.2	15
118	Modeling the Fate of <i>Escherichia coli</i> O157:H7 and <i>Salmonella enterica</i> in the Agricultural Environment: Current Perspective. Journal of Food Science, 2014, 79, R421-7.	1.5	15
119	Catabolism of the groundwater micropollutant 2,6-dichlorobenzamide beyond 2,6-dichlorobenzoate is plasmid encoded in Aminobacter sp. MSH1. Applied Microbiology and Biotechnology, 2018, 102, 7963-7979.	1.7	15
120	The pesticide mineralization capacity in sand filter units of drinking water treatment plants (DWTP): Consistency in time and relationship with intake water and sand filter characteristics. Chemosphere, 2019, 228, 427-436.	4.2	15
121	Genetic (In)stability of 2,6-Dichlorobenzamide Catabolism in Aminobacter sp. Strain MSH1 Biofilms under Carbon Starvation Conditions. Applied and Environmental Microbiology, 2017, 83, .	1.4	14
122	Modelling reactive CAH transport using batch experiment degradation kinetics. Water Research, 2010, 44, 2981-2989.	5.3	13
123	Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: Experimental demonstration in diffusion-cells. Journal of Contaminant Hydrology, 2013, 147, 25-33.	1.6	13
124	Response to mixed substrate feeds of the structure and activity of a linuron-degrading triple-species biofilm. Research in Microbiology, 2010, 161, 660-666.	1.0	12
125	Distribution of a dechlorinating community in relation to the distance from a trichloroethene dense nonaqueous phase liquid in a model aquifer. FEMS Microbiology Ecology, 2012, 81, 636-647.	1.3	12
126	Impact of dry-wet and freeze-thaw events on pesticide mineralizing populations and their activity in wetland ecosystems: A microcosm study. Chemosphere, 2016, 146, 85-93.	4.2	12

#	Article	IF	Citations
127	Molecular processes underlying synergistic linuron mineralization in a tripleâ€species bacterial consortium biofilm revealed by differential transcriptomics. MicrobiologyOpen, 2018, 7, e00559.	1.2	12
128	Comparable dynamics of linuron catabolic genes and IncP-1 plasmids in biopurification systems (BPSs) as a response to linuron spiking. Applied Microbiology and Biotechnology, 2017, 101, 4815-4825.	1.7	12
129	EFFECT OF SHORT-TERM EXPOSURE TO METHYL-TERT-BUTYL ETHER AND TERT-BUTYL ALCOHOL ON THE HATCH RATE AND DEVELOPMENT OF THE AFRICAN CATFISH, CLARIAS GARIEPINUS. Environmental Toxicology and Chemistry, 2006, 25, 514.	2.2	11
130	The quantity and quality of dissolved organic matter as supplementary carbon source impacts the pesticide-degrading activity of a triple-species bacterial biofilm. Applied Microbiology and Biotechnology, 2014, 98, 931-943.	1.7	11
131	Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons. Applied Microbiology and Biotechnology, 2014, 98, 2255-2266.	1.7	11
132	<i>Aminobacter</i> sp. MSH1 Mineralizes the Groundwater Micropollutant 2,6-Dichlorobenzamide through a Unique Chlorobenzoate Catabolic Pathway. Environmental Science & Echnology, 2019, 53, 10146-10156.	4.6	11
133	Identification of <i>opsA</i> , a Gene Involved in Solute Stress Mitigation and Survival in Soil, in the Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Novosphingobium sp. Strain LH128. Applied and Environmental Microbiology, 2014, 80, 3350-3361.	1.4	10
134	Electron donor limitations reduce microbial enhanced trichloroethene DNAPL dissolution: A flux-based analysis using diffusion-cells. Chemosphere, 2013, 91, 7-13.	4.2	9
135	Microbial Community Characterization in a Pilot-Scale Permeable Reactive Iron Barrier. Environmental Engineering Science, 2010, 27, 287-292.	0.8	8
136	Development and validation of a culture-based method suitable for monitoring environmental survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in developing countries. Annals of Microbiology, 2011, 61, 809-817.	1.1	8
137	Recovery of Soil Ammonia Oxidation After Long-Term Zinc Exposure Is Not Related to the Richness of the Bacterial Nitrifying Community. Microbial Ecology, 2013, 66, 312-321.	1.4	8
138	PromA Plasmids Are Instrumental in the Dissemination of Linuron Catabolic Genes Between Different Genera. Frontiers in Microbiology, 2020, 11 , 149 .	1.5	8
139	<i>In situ</i> response of the linuron degradation potential to linuron application in an agricultural field. FEMS Microbiology Ecology, 2013, 85, 403-416.	1.3	7
140	Aminobacter sp. MSH1 invades sand filter community biofilms while retaining 2,6-dichlorobenzamide degradation functionality under C and N limiting conditions. FEMS Microbiology Ecology, 2017, 93, .	1.3	7
141	Individual-Based Modelling of Invasion in Bioaugmented Sand Filter Communities. Processes, 2018, 6, 2.	1.3	7
142	A high-throughput assay to quantify protein hydrolysis in aerobic and anaerobic wastewater treatment processes. Applied Microbiology and Biotechnology, 2020, 104, 8037-8048.	1.7	7
143	Use of DNA probes and plasmid capture in a search for new interesting environmental genes. Science of the Total Environment, 1993, 139-140, 471-478.	3.9	6
144	Transport and degradation of pesticides in a biopurification system under variable flux Part II: A macrocosm study. Environmental Pollution, 2010, 158, 3317-3322.	3.7	5

#	Article	IF	Citations
145	Inhibition ofGeobacterDechlorinators at Elevated Trichloroethene Concentrations Is Explained by a Reduced Activity Rather than by an Enhanced Cell Decay. Environmental Science & Decay; Technology, 2013, 47, 130115145641003.	4.6	5
146	Biofouling in membrane bioreactors: nexus between polyacrylonitrile surface charge and community composition. Biofouling, 2018, 34, 237-251.	0.8	5
147	Impact of the inoculum composition on the structure of the total and active community and its performance in identically operated anaerobic reactors. Applied Microbiology and Biotechnology, 2019, 103, 9191-9203.	1.7	5
148	The complete genome of 2,6-dichlorobenzamide (BAM) degrader Aminobacter sp. MSH1 suggests a polyploid chromosome, phylogenetic reassignment, and functions of plasmids. Scientific Reports, 2021, 11, 18943.	1.6	5
149	The influence of small- and large-scale composting on the dissipation of pesticide residues in a biopurification matrix. Journal of the Science of Food and Agriculture, 2010, 90, 1113-1120.	1.7	4
150	Carbon catabolite repression and cell dispersal affects degradation of the xenobiotic compound 3,4-dichloroaniline in Comamonas testosteroni WDL7 biofilms. FEMS Microbiology Ecology, 2017, 93, fix004.	1.3	4
151	Motile Geobacter dechlorinators migrate into a model source zone of trichloroethene dense non-aqueous phase liquid: Experimental evaluation and modeling. Journal of Contaminant Hydrology, 2014, 170, 28-38.	1.6	3
152	Intra- and inter-field diversity of 2,4-dichlorophenoxyacetic acid-degradative plasmids and their <i>tfd</i> catabolic genes in rice fields of the Mekong delta in Vietnam. FEMS Microbiology Ecology, 2019, 95, .	1.3	3
153	Draft Genome Sequence of Aeromonas sp. Strain EERV15. Genome Announcements, 2016, 4, .	0.8	2
154	Interspecies Interactions of the 2,6-Dichlorobenzamide Degrading <i>Aminobacter</i> sp. MSH1 with Resident Sand Filter Bacteria: Indications for Mutual Cooperative Interactions That Improve BAM Mineralization Activity. Environmental Science & Eamp; Technology, 2022, 56, 1352-1364.	4.6	2
155	Erratum to "Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters― FEMS Microbiology Ecology, 2003, 44, 137-137.	1.3	1
156	Long-Range PCR Reveals the Genetic Cargo of IncP-1 Plasmids in the Complex Microbial Community of an On-Farm Biopurification System Treating Pesticide-Contaminated Wastewater. Applied and Environmental Microbiology, 2022, 88, AEM0164821.	1.4	1
157	Evaluation of the biofilm forming capacity of the 2, 6-dichlorobenzamide (BAM) degrading Aminobacter sp. strain MSH1 at macropollutant and micropollutant BAM concentrations. Communications in Agricultural and Applied Biological Sciences, 2013, 78, 31-6.	0.0	1
158	Conjugation-Mediated Gene Transfer in Bacterial Strains to Be Used for Bioremediation., 1997,, 153-168.		0
159	Quantification of MTBE and TBA biodegradation. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 513-518.	0.4	0
160	Modelling methyl tertiary butyl ether and tertiary butyl alcohol biodegradation by a bacterial consortium. Mathematical and Computer Modelling of Dynamical Systems, 2011, 17, 491-500.	1.4	0
161	DNA-SIP and repeated isolation corroborate <i>Variovorax </i> as a key organism in maintaining the genetic memory for linuron biodegradation in an agricultural soil. FEMS Microbiology Ecology, 2021, 97, .	1.3	0