Alberto Palmero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2922160/publications.pdf

Version: 2024-02-01

64 papers

1,825 citations

257357 24 h-index 276775
41
g-index

64 all docs

64 docs citations

times ranked

64

1971 citing authors

#	Article	IF	CITATIONS
1	Compositional gradients at the nanoscale in substoichiometric thin films deposited by magnetron sputtering at oblique angles: A case study on SiO _{<i>x</i>} thin films. Plasma Processes and Polymers, 2022, 19, 2100116.	1.6	1
2	Electrical and reaction performances of packedâ€bed plasma reactors moderated with ferroelectric or dielectric materials. Plasma Processes and Polymers, 2021, 18, 2000193.	1.6	6
3	Patterning and control of the nanostructure in plasma thin films with acoustic waves: mechanical <i>vs.</i> electrical polarization effects. Materials Horizons, 2021, 8, 515-524.	6.4	9
4	Electrochromic response and porous structure of WO3 cathode layers. Electrochimica Acta, 2021, 376, 138049.	2.6	32
5	Editorial for Special Issue: Nanostructured Surfaces and Thin Films Synthesis by Physical Vapor Deposition. Nanomaterials, 2021, 11, 148.	1.9	2
6	Positron annihilation analysis of nanopores and growth mechanism of oblique angle evaporated TiO2 and SiO2 thin films and multilayers. Microporous and Mesoporous Materials, 2020, 295, 109968.	2.2	8
7	A 4-view imaging to reveal microstructural differences in obliquely sputter-deposited tungsten films. Materials Letters, 2020, 264, 127381.	1.3	13
8	Advanced Strategies in Thin Films Engineering by Magnetron Sputtering. Coatings, 2020, 10, 419.	1.2	4
9	Wetting and spreading of liquid lithium onto nanocolumnar tungsten coatings tailored through the topography of stainless steel substrates. Nuclear Fusion, 2020, 60, 126033.	1.6	6
10	Kinetic energy-induced growth regimes of nanocolumnar Ti thin films deposited by evaporation and magnetron sputtering. Nanotechnology, 2019, 30, 475603.	1.3	13
11	Antibacterial Nanostructured Ti Coatings by Magnetron Sputtering: From Laboratory Scales to Industrial Reactors. Nanomaterials, 2019, 9, 1217.	1.9	30
12	SiOx by magnetron sputtered revisited: Tailoring the photonic properties of multilayers. Applied Surface Science, 2019, 488, 791-800.	3.1	13
13	2D compositional self-patterning in magnetron sputtered thin films. Applied Surface Science, 2019, 480, 115-121.	3.1	3
14	Environmentally Tight TiO ₂ â€"SiO ₂ Porous 1Dâ€Photonic Structures. Advanced Materials Interfaces, 2019, 6, 1801212.	1.9	6
15	Growth of nanocolumnar thin films on patterned substrates at oblique angles. Plasma Processes and Polymers, 2019, 16, 1800135.	1.6	11
16	Growth of nanocolumnar porous TiO 2 thin films by magnetron sputtering using particle collimators. Surface and Coatings Technology, 2018, 343, 172-177.	2,2	25
17	Structural control in porous/compact multilayer systems grown by magnetron sputtering. Nanotechnology, 2017, 28, 465605.	1.3	6
18	Micronâ€scale wedge thin films prepared by plasma enhanced chemical vapor deposition. Plasma Processes and Polymers, 2017, 14, 1700043.	1.6	2

#	Article	IF	CITATIONS
19	Cholesterol biosensing with a polydopamine-modified nanostructured platinum electrode prepared by oblique angle physical vacuum deposition. Sensors and Actuators B: Chemical, 2017, 240, 37-45.	4.0	38
20	Fabrication of black-gold coatings by glancing angle deposition with sputtering. Beilstein Journal of Nanotechnology, 2017, 8, 434-439.	1.5	26
21	Highâ€Rate Deposition of Stoichiometric Compounds by Reactive Magnetron Sputtering at Oblique Angles. Plasma Processes and Polymers, 2016, 13, 960-964.	1.6	10
22	Nanocolumnar association and domain formation in porous thin films grown by evaporation at oblique angles. Nanotechnology, 2016, 27, 395702.	1.3	23
23	Stoichiometric Control of SiO $<$ sub $>$ x $<$ /sub $>$ Thin Films Grown by Reactive Magnetron Sputtering at Oblique Angles. Plasma Processes and Polymers, 2016, 13, 1242-1248.	1.6	7
24	Nanostructured Ti thin films by magnetron sputtering at oblique angles. Journal Physics D: Applied Physics, 2016, 49, 045303.	1.3	54
25	Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progress in Materials Science, 2016, 76, 59-153.	16.0	564
26	Modulating Low Energy Ion Plasma Fluxes for the Growth of Nanoporous Thin Films. Plasma Processes and Polymers, 2015, 12, 719-724.	1.6	9
27	Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation. Acta Biomaterialia, 2015, 15, 20-28.	4.1	85
28	On the Deposition Rates of Magnetron Sputtered Thin Films at Oblique Angles. Plasma Processes and Polymers, 2014, 11, 571-576.	1.6	38
29	On the kinetic and thermodynamic electron temperatures in non-thermal plasmas. Europhysics Letters, 2014, 105, 15001.	0.7	3
30	Nanocolumnar growth of thin films deposited at oblique angles: Beyond the tangent rule. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	0.6	42
31	On the formation of the porous structure in nanostructured a-Si coatings deposited by dc magnetron sputtering at oblique angles. Nanotechnology, 2014, 25, 355705.	1.3	39
32	Atomistic model of ultra-smooth amorphous thin film growth by low-energy ion-assisted physical vapour deposition. Journal Physics D: Applied Physics, 2013, 46, 395303.	1.3	5
33	Enhancement of visible light-induced surface photo-activity of nanostructured N–TiO2 thin films modified by ion implantation. Chemical Physics Letters, 2013, 582, 95-99.	1.2	12
34	Growth regimes of porous gold thin films deposited by magnetron sputtering at oblique incidence: from compact to columnar microstructures. Nanotechnology, 2013, 24, 045604.	1.3	71
35	Growth of SiO ₂ and TiO ₂ thin films deposited by reactive magnetron sputtering and PECVD by the incorporation of nonâ€directional deposition fluxes. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 796-801.	0.8	15
36	Influence of plasma-generated negative oxygen ion impingement on magnetron sputtered amorphous SiO2 thin films during growth at low temperatures. Journal of Applied Physics, 2012, 111, 054312.	1.1	29

3

#	Article	IF	CITATIONS
37	Theoretical and experimental characterization of TiO ₂ thin films deposited at oblique angles. Journal Physics D: Applied Physics, 2011, 44, 385302.	1.3	45
38	Morphological evolution of pulsed laser deposited ZrO2 thin films. Journal of Applied Physics, 2010, 107, .	1.1	32
39	Surface nanostructuring of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mn> films by high energy ion irradiation. Physical Review B, 2010, 82, .</mml:mn></mml:mrow></mml:mrow></mml:math>	2 ⊲/ ɪnml:m	ın 29 /mml:ms
40	Tilt angle control of nanocolumns grown by glancing angle sputtering at variable argon pressures. Applied Physics Letters, 2010, 97, .	1.5	50
41	On the microstructure of thin films grown by an isotropically directed deposition flux. Journal of Applied Physics, 2010, 108, 064316.	1.1	30
42	Surface nanostructuring of TiO2 thin films by ion beam irradiation. Scripta Materialia, 2009, 60, 574-577.	2.6	21
43	On the argon and oxygen incorporation into SiOx through ion implantation during reactive plasma magnetron sputter deposition. Applied Surface Science, 2008, 255, 3079-3084.	3.1	7
44	On the ion and neutral atom bombardment of the growth surface in magnetron plasma sputter deposition. Applied Physics Letters, 2007, 91, 171501.	1.5	32
45	Distinct processes in radio-frequency reactive magnetron plasma sputter deposition of silicon suboxide films. Journal of Applied Physics, 2007, 102, .	1.1	11
46	One-dimensional analysis of the rate of plasma-assisted sputter deposition. Journal of Applied Physics, 2007, 101, 083307.	1.1	36
47	Characterization of a low-pressure argon plasma using optical emission spectroscopy and a global model. Journal of Applied Physics, 2007, 101, 053306.	1.1	29
48	Characterization of the ion cathode fall region in relation to the growth rate in plasma sputter deposition. European Physical Journal D, 2007, 41, 303-309.	0.6	3
49	Generalized Keller-Simmons formula for nonisothermal plasma-assisted sputtering depositions. Applied Physics Letters, 2006, 89, 211501.	1.5	26
50	On-line characterisation of radiofrequency magnetron sputter deposition of SiOx using elastic recoil detection. Thin Solid Films, 2006, 494, 13-17.	0.8	4
51	Characterization of an Ar/O2 magnetron sputtering plasma using a Langmuir probe and an energy resolved mass spectrometer. Thin Solid Films, 2006, 494, 18-22.	0.8	7
52	Study of the gas rarefaction phenomenon in a magnetron sputtering system. Thin Solid Films, 2006, 515, 631-635.	0.8	30
53	Gas heating in plasma-assisted sputter deposition. Applied Physics Letters, 2005, 87, 071501.	1.5	27
54	Study of the a-Si/a-SiO2 interface deposited by r.f. magnetron sputtering. Thin Solid Films, 2004, 447-448, 306-310.	0.8	10

#	Article	lF	CITATIONS
55	Characterization of the plasma in a radio-frequency magnetron sputtering system. Journal of Applied Physics, 2004, 95, 7611-7618.	1.1	27
56	On the deposition process of silicon suboxides by a RF magnetron reactive sputtering in Ar–O2 mixtures: theoretical and experimental approach. Surface and Coatings Technology, 2004, 177-178, 215-221.	2.2	23
57	Argon plasma modelling in a RF magnetron sputtering system. Surface and Coatings Technology, 2004, 188-189, 392-398.	2.2	10
58	Experimental characterization of the deposition of silicon suboxide films in a radiofrequency magnetron reactive sputtering system. Surface and Coatings Technology, 2004, 188-189, 399-403.	2.2	16
59	Gas heating in low-pressure microwave argon discharges. Physical Review E, 2002, 66, 066401.	0.8	7
60	Gas Temperature Measurement in a Surface-Wave Argon Plasma Column at Low Pressures. Japanese Journal of Applied Physics, 2002, 41, 5787-5791.	0.8	4
61	Excitation Equilibria in an Argon Surface-Wave-Produced and -Sustained Plasmas. Japanese Journal of Applied Physics, 2002, 41, 5659-5667.	0.8	3
62	Gas temperature equation in a high-frequency argon plasma column at low pressures. Physics of Plasmas, 2002, 9, 358-363.	0.7	6
63	Electron temperature measurement in a slot antenna 2.45 GHz microwave plasma source. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 410.	1.6	19
64	Electron temperature measurement in a surface-wave-produced argon plasma at intermediate pressures. European Physical Journal D, 2001, 14, 361-366.	0.6	21