Scott E Denmark

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2921833/scott-e-denmark-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

477	27,124	90	135
papers	citations	h-index	g-index
633 ext. papers	29,631 ext. citations	8.4 avg, IF	7.62 L-index

#	Paper	IF	Citations
477	Lewis Base Catalyzed, Sulfenium Ion Initiated Enantioselective, Spiroketalization Cascade. <i>Journal of Organic Chemistry</i> , 2021 , 86, 14250-14289	4.2	O
476	Synthesis of Enantioenriched 3,4-Disubstituted Chromans through Lewis Base Catalyzed Carbosulfenylation. <i>Journal of Organic Chemistry</i> , 2021 , 86, 14290-14310	4.2	3
475	A Conformer-Dependent, Quantitative Quadrant Model. <i>European Journal of Organic Chemistry</i> , 2021 , 2021, 2343-2354	3.2	3
474	Dreams, False Starts, Dead Ends, and Redemption: A Chronicle of the Evolution of a Chemoinformatic Workflow for the Optimization of Enantioselective Catalysts. <i>Accounts of Chemical Research</i> , 2021 , 54, 2041-2054	24.3	9
473	Computational methods for training set selection and error assessment applied to catalyst design: guidelines for deciding which reactions to run first and which to run next. <i>Reaction Chemistry and Engineering</i> , 2021 , 6, 694-708	4.9	4
472	Stereochemical language in supramolecular polymer chemistry: How we can do better. <i>Journal of Polymer Science</i> , 2021 , 59, 1171-1174	2.4	9
471	A Unified Strategy for the Asymmetric Synthesis of Highly Substituted 1,2-Amino Alcohols Leading to Highly Substituted Bisoxazoline Ligands. <i>Journal of Organic Chemistry</i> , 2021 , 86, 3490-3534	4.2	5
470	Heteroaryl-Heteroaryl, Suzuki-Miyaura, Anhydrous Cross-Coupling Reactions Enabled by Trimethyl Borate. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13845-13853	16.4	9
469	Catalytic, Enantioselective -Oxyamination of Alkenes. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13408-13417	16.4	6
468	Leveraging Machine Learning for Enantioselective Catalysis: From Dream to Reality. <i>Chimia</i> , 2021 , 75, 592-597	1.3	1
467	Development of a Computer-Guided Workflow for Catalyst Optimization. Descriptor Validation, Subset Selection, and Training Set Analysis. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11578-	116 9 2	24
466	Demystifying the asymmetry-amplifying, autocatalytic behaviour of the Soai reaction through structural, mechanistic and computational studies. <i>Nature Chemistry</i> , 2020 , 12, 412-423	17.6	20
465	Anhydrous, Homogeneous, Suzuki-Miyaura Cross-Coupling of Boronic Esters using Potassium Trimethylsilanolate. <i>Organic Syntheses</i> , 2020 , 97, 245-261	1.2	1
464	Quantitative Structure-Selectivity Relationships in Enantioselective Catalysis: Past, Present, and Future. <i>Chemical Reviews</i> , 2020 , 120, 1620-1689	68.1	62
463	Enantioselective Synthesis of Lactams by Lewis Base Catalyzed Sulfenoamidation of Alkenes. <i>Organic Letters</i> , 2020 , 22, 2501-2505	6.2	17
462	Potassium Trimethylsilanolate Enables Rapid, Homogeneous Suzuki-Miyaura Cross-Coupling of Boronic Esters. <i>ACS Catalysis</i> , 2020 , 10, 73-80	13.1	19
461	Asymmetric Hydrogenation of Unfunctionalized Tetrasubstituted Acyclic Olefins. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 2844-2849	16.4	16

(2018-2020)

Structural Contributions to Autocatalysis and Asymmetric Amplification in the Soai Reaction. Journal of the American Chemical Society, 2020 , 142, 18387-18406	16.4	6
Cautionary Guidelines for Machine Learning Studies with Combinatorial Datasets. <i>ACS Combinatorial Science</i> , 2020 , 22, 586-591	3.9	11
Katalytische enantioselektive Sulfenofunktionalisierung von Alkenen: Entwicklung und aktuelle Fortschritte. <i>Angewandte Chemie</i> , 2020 , 132, 19966-19990	3.6	2
Catalytic, Enantioselective Sulfenofunctionalization of Alkenes: Development and Recent Advances. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19796-19819	16.4	28
Organoselenium-catalyzed enantioselective -dichlorination of unbiased alkenes. <i>Tetrahedron</i> , 2019 , 75, 4086-4098	2.4	17
A Dinuclear Mechanism Implicated in Controlled Carbene Polymerization. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6473-6478	16.4	18
Evaluating continuous chirality measure as a 3D descriptor in chemoinformatics applied to asymmetric catalysis. <i>Tetrahedron</i> , 2019 , 75, 1841-1851	2.4	20
Enantioselective, Lewis Base-Catalyzed, Intermolecular Sulfenoamination of Alkenes. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13767-13771	16.4	28
Enantio- and Diastereoselective, Lewis Base Catalyzed, Cascade Sulfenoacetalization of Alkenyl Aldehydes. <i>Angewandte Chemie</i> , 2019 , 131, 12616-12620	3.6	9
Unusual Kinetic Profiles for Lewis Base-Catalyzed Sulfenocyclization of -Geranylphenols in Hexafluoroisopropyl Alcohol. <i>Synlett</i> , 2019 , 30, 1656-1661	2.2	3
Enantio- and Diastereoselective, Lewis Base Catalyzed, Cascade Sulfenoacetalization of Alkenyl Aldehydes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12486-12490	16.4	26
Lewis Base Activation of Silicon Lewis Acids 2019 , 333-415		1
Preparation of a Diisopropylselenophosphoramide Catalyst and its Use in Enantioselective Sulfenoetherification. <i>Organic Syntheses</i> , 2019 , 96, 400-417	1.2	2
()-'-Dimethyl-1,1'-binaphthyldiamine. <i>Organic Syntheses</i> , 2019 , 96, 382-399	1.2	
Catalytic, Enantioselective Diamination of Alkenes. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19161-19170	16.4	37
Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. <i>Science</i> , 2019 , 363,	33.3	165
Enantioselective, Lewis Base-Catalyzed Sulfenocyclization of Polyenes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3569-3573	16.4	72
Elucidating the Role of the Boronic Esters in the Suzuki-Miyaura Reaction: Structural, Kinetic, and Computational Investigations. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4401-4416	16.4	72
	Cautionary Guidelines for Machine Learning Studies with Combinatorial Datasets. ACS Combinatorial Science, 2020, 22, 586-591 Katalytische enantioselektive Sulfenofunktionalisierung von Alkenen: Entwicklung und aktuelle Fortschritte. Angewandte Chemie, 2020, 132, 19966-19990 Catalytic, Enantioselective Sulfenofunctionalization of Alkenes: Development and Recent Advances. Angewandte Chemie - International Edition, 2020, 59, 19796-19819 Organoselenium-catalyzed enantioselective -dichlorination of unbiased alkenes. Tetrahedron, 2019, 75, 4086-4098 A Dinuclear Mechanism Implicated in Controlled Carbene Polymerization. Journal of the American Chemical Society, 2019, 141, 6473-6478 Evaluating continuous chirality measure as a 3D descriptor in chemoinformatics applied to asymmetric catalysis. Tetrahedron, 2019, 75, 1841-1851 Enantioselective, Lewis Base-Catalyzed, Intermolecular Sulfenoamination of Alkenes. Journal of the American Chemical Society, 2019, 141, 13767-13771 Enantio- and Diastereoselective, Lewis Base Catalyzed, Cascade Sulfenoacetalization of Alkenyl Aldehydes. Angewandte Chemie, 2019, 131, 12616-12620 Unusual Kinetic Profiles for Lewis Base-Catalyzed Sulfenocyclization of -Geranylphenols in Hexalfuoroisopropyl Alcohol. Synlett, 2019, 30, 1656-1661 Enantio- and Diastereoselective, Lewis Base Catalyzed, Cascade Sulfenoacetalization of Alkenyl Aldehydes. Angewandte Chemie - International Edition, 2019, 58, 12486-12490 Lewis Base Activation of Silicon Lewis Acids 2019, 333-415 Preparation of a Diisopropylselenophosphoramide Catalyst and its Use in Enantioselective Sulfenoetherification. Organic Syntheses, 2019, 96, 400-417 O'-Dimethyl-1,1'-binaphthyldiamine. Organic Syntheses, 2019, 96, 382-399 Catalytic, Enantioselective Diamination of Alkenes. Journal of the American Chemical Society, 2019, 363, 80, 400-417 Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science, 2019, 363, 80, 400-417 Prediction of higher-selectivity catalysts by computer-driven	Cautionary Guidelines for Machine Learning Studies with Combinatorial Datasets. ACS Combinatorial Science, 2020, 22, 586-591 Atalytische enantioselektive Sulfenofunktionalisierung von Alkenen: Entwicklung und aktuelle Fortschritte. Angewandte Chemie, 2020, 132, 19966-19990 Catalytic, Enantioselective Sulfenofunctionalization of Alkenes: Development and Recent Advances. Angewandte Chemie, 2020, 132, 19966-19990 Organoselenium-catalyzed enantioselective -dichlorination of unbiased alkenes. Tetrahedron, 2019, 75, 4086-4098 A Dinuclear Mechanism Implicated in Controlled Carbene Polymerization. Journal of the American Chemical Society, 2019, 141, 6473-6478 Evaluating continuous chirality measure as a 3D descriptor in chemoinformatics applied to asymmetric catalysis. Tetrahedron, 2019, 75, 1841-1851 Enantioselective, Lewis Base-Catalyzed, Intermolecular Sulfenoamination of Alkenes. Journal of the American Chemical Society, 2019, 141, 13767-13771 Enantio- and Diastereoselective, Lewis Base Catalyzed, Cascade Sulfenoacetalization of Alkenyl Aldehydes. Angewandte Chemie, 2019, 131, 12616-12620 Unusual Kinetic Profiles for Lewis Base-Catalyzed Sulfenocyclization of -Geranylphenols in Hexafluoroisopropyl Alcohol. Synlett. 2019, 30, 1656-1661 Enantio- and Diastereoselective, Lewis Base Catalyzed, Cascade Sulfenoacetalization of Alkenyl Aldehydes. Angewandte Chemie - International Edition, 2019, 58, 12486-12490 16.4 Preparation of a Diisopropylselenophosphoramide Catalyst and its Use in Enantioselective Sulfenoetherification. Organic Syntheses, 2019, 96, 400-417 0Dimethyl-1,1-binaphthyldiamine. Organic Syntheses, 2019, 96, 382-399 1.2 Catalytic, Enantioselective Diamination of Alkenes. Journal of the American Chemical Society, 2019, 141, 19161-19170 Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science, 2019, 363, Enantioselective, Lewis Base-Catalyzed Sulfenocyclization of Polyenes. Journal of the American Chemical Society, 2018, 140, 3569-3573

442	Organic Synthesis: Wherefrom and Whither? (Some Very Personal Reflections). <i>Israel Journal of Chemistry</i> , 2018 , 58, 61-72	3.4	10
441	Palladium/Rhodium Cooperative Catalysis for the Production of Aryl Aldehydes and Their Deuterated Analogues Using the Water-Gas Shift Reaction. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10362-10367	16.4	25
440	Palladium/Rhodium Cooperative Catalysis for the Production of Aryl Aldehydes and Their Deuterated Analogues Using the Water Las Shift Reaction. <i>Angewandte Chemie</i> , 2018 , 130, 10519-10524	₄ 3.6	4
439	Catalytic Nucleophilic Allylation Driven by the Water-Gas Shift Reaction. <i>Journal of Organic Chemistry</i> , 2018 , 83, 23-48	4.2	8
438	Investigating the Enantiodetermining Step of a Chiral Lewis Base Catalyzed Bromocycloetherification of Privileged Alkenes. <i>Synlett</i> , 2018 , 29, 433-439	2.2	11
437	Enantioselective, Lewis Base-Catalyzed Carbosulfenylation of Alkenylboronates by 1,2-Boronate Migration. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15621-15625	16.4	57
436	Selective extraction of supported Rh nanoparticles under mild, non-acidic conditions with carbon monoxide. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18075-18083	13	2
435	Synthesis, Reactivity, Functionalization, and ADMET Properties of Silicon-Containing Nitrogen Heterocycles. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6668-6684	16.4	43
434	Catalytic, Enantioselective, Intramolecular Sulfenofunctionalization of Alkenes with Phenols. Journal of Organic Chemistry, 2017 , 82, 3192-3222	4.2	54
433	Structural, Kinetic, and Computational Characterization of the Elusive Arylpalladium(II)boronate Complexes in the Suzuki-Miyaura Reaction. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3805-38	329.4	107
432	Synthesis of 2-Alkenyl-Tethered Anilines. <i>Synthesis</i> , 2017 , 49, 2873-2888	2.9	3
431	Catalytic, Enantioselective, Intramolecular Sulfenoamination of Alkenes with Anilines. <i>Journal of Organic Chemistry</i> , 2017 , 82, 3826-3843	4.2	43
430	Room Temperature, Reductive Alkylation of Activated Methylene Compounds: Carbon arbon Bond Formation Driven by the Rhodium-Catalyzed Water as Shift Reaction. ACS Catalysis, 2017, 7, 613-	630 ¹	23
429	Unexpected Rearrangement of 2-Bromoaniline under Biphasic Alkylation Conditions. <i>Synlett</i> , 2017 , 28, 2891-2895	2.2	6
428	Structural, Mechanistic, Spectroscopic, and Preparative Studies on the Lewis Base Catalyzed, Enantioselective Sulfenofunctionalization of Alkenes. <i>Helvetica Chimica Acta</i> , 2017 , 100, e1700158	2	32
427	Understanding Site Selectivity in the Palladium-Catalyzed Cross-Coupling of Allenylsilanolates. <i>Synlett</i> , 2017 , 28, 2415-2420	2.2	
426	Ernest L. Eliel, a Physical Organic Chemist with the Right Tool for the Job: Rapid Injection Nuclear Magnetic Resonance. <i>ACS Symposium Series</i> , 2017 , 105-134	0.4	2
425	Summation 2016 , 1351-1354		

424	Mechanistic Options for the Morita B aylis⊞illman Reaction (n?-ȝੴ) 2016 , 191-232		2
423	Bifunctional Lewis Base Catalysis with Dual Activation of RM and C=O (n -j型) 2016 , 339-386		
422	The CoreyBakshiBhibata Reduction: Mechanistic and Synthetic Considerations IBifunctional Lewis Base Catalysis with Dual Activation 2016 , 387-456		10
421	Chiral Lewis Base Activation of Acyl and Related Donors in Enantioselective Transformations (n?-}門) 2016 , 457-526		2
420	Catalytic Generation of Ammonium Enolates and Related Tertiary Amine-Derived Intermediates: Applications, Mechanism, and Stereochemical Models (n?-疗图) 2016 , 527-654		11
419	Morita B aylis⊞illman, Vinylogous Morita B aylis⊞illman, and Rauhut¶urrier Reactions 2016 , 655-714		2
418	Enamine-Mediated Catalysis (n?-}的 2016 , 857-902		3
417	SiជាX and SiជាEWG as Carbanion Equivalents under Lewis Base Activation (n?-ንଞ) 2016 , 903-966		
416	Activation of B B and B B i Bonds and Synthesis of Organoboron and Organosilicon Compounds through Lewis Base-Catalyzed Transformations (n?-ȝn *) 2016 , 967-1010		5
415	Lewis Base-Catalyzed Reactions of SiX 3-Based Reagents with C=O, C=N (n?-ያืጀ) 2016 , 1011-1038		3
414	Lewis Bases as Catalysts in the Reduction of Imines and Ketones with Silanes (n?-}图) 2016 , 1077-1112		4
413	Bifunctional Catalysis with Lewis Base and X-H Sites That Facilitate Proton Transfer or Hydrogen Bonding (n?-}图) 2016 , 1259-1288		1
412	Thermodynamic Treatments of Lewis Basicity 2016 , 55-84		1
411	Quantitative Treatments of Nucleophilicity and Carbon Lewis Basicity 2016 , 85-118		1
410	Anhydride Activation by 4-Dialkylaminopyridines and Analogs (n -j图) 2016 , 119-144		2
409	Mechanistic Understanding of Proline Analogs and Related Protic Lewis Bases (n?-}問) 2016 , 145-190		
408	Mechanism of CBi Bond Cleavage Using Lewis Bases (n -j图) 2016 , 233-280		6
407	Toward Catalytic, Enantioselective Chlorolactonization of 1,2-Disubstituted Styrenyl Carboxylic Acids. <i>Journal of Organic Chemistry</i> , 2016 , 81, 10411-10423	4.2	24

406	From Catalysis to Lewis Base Catalysis with Highlights from 1806 to 1970 2016 , 1-30		1
405	Beyond the Morita B aylis⊞illman Reaction (n?-ŷ॰) 2016 , 715-804		6
404	Iminium Catalysis (n?-}图) 2016 , 805-856		5
403	Catalysis with Stable Carbenes (n ?-}問) 2016 , 1289-1350		
402	Non-invasive analysis of bovine embryo metabolites during in vitro embryo culture using nuclear magnetic resonance. <i>AIMS Bioengineering</i> , 2016 , 3, 538-551	3.4	1
401	Pre-transmetalation intermediates in the Suzuki-Miyaura reaction revealed: The missing link. <i>Science</i> , 2016 , 352, 329-32	33.3	195
400	Harnessing the Power of the Water-Gas Shift Reaction for Organic Synthesis. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12164-89	16.4	52
399	Die Wassergas-Shift-Reaktion in der organischen Synthese. <i>Angewandte Chemie</i> , 2016 , 128, 12348-123	74 .6	17
398	Why You Really Should Consider Using Palladium-Catalyzed Cross-Coupling of Silanols and Silanolates. <i>Organic Process Research and Development</i> , 2015 , 19, 982-994	3.9	110
397	Mechanistic significance of the si-o-pd bond in the palladium-catalyzed cross-coupling reactions of alkenylsilanolates. <i>Journal of the American Chemical Society</i> , 2015 , 137, 6192-9	16.4	21
396	Mechanistic significance of the si-o-pd bond in the palladium-catalyzed cross-coupling reactions of arylsilanolates. <i>Journal of the American Chemical Society</i> , 2015 , 137, 6200-18	16.4	27
395	Development of a Phase-Transfer-Catalyzed, [2,3]-Wittig Rearrangement. <i>Journal of Organic Chemistry</i> , 2015 , 80, 11818-48	4.2	26
394	Development of Chiral Bis-hydrazone Ligands for the Enantioselective Cross-Coupling Reactions of Aryldimethylsilanolates. <i>Journal of Organic Chemistry</i> , 2015 , 80, 313-66	4.2	27
393	Catalytic, Stereoselective Dihalogenation of Alkenes: Challenges and Opportunities. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15642-82	16.4	118
392	Katalytische stereoselektive Dihalogenierung von Alkenen: Herausforderungen und Chancen. <i>Angewandte Chemie</i> , 2015 , 127, 15866-15909	3.6	28
391	Reinvestigation of a Catalytic, Enantioselective Alkene Dibromination and Chlorohydroxylation. <i>Organic Letters</i> , 2015 , 17, 5728-31	6.2	25
390	Redefining: quaternary ammonium cross sectional area (XSA) as a general descriptor for transport-limiting PTC rate approximations. <i>Chemical Science</i> , 2015 , 6, 2211-false	9.4	8
389	Catalytic, stereospecific syn-dichlorination of alkenes. <i>Nature Chemistry</i> , 2014 , 7, 146-52	17.6	130

388	Tandem [4+2]/[3+2] Cycloadditions 2014 , 471-550		5
387	Catalytic, enantioselective, intramolecular carbosulfenylation of olefins. Preparative and stereochemical aspects. <i>Journal of Organic Chemistry</i> , 2014 , 79, 140-71	4.2	55
386	Mechanistic, crystallographic, and computational studies on the catalytic, enantioselective sulfenofunctionalization of alkenes. <i>Nature Chemistry</i> , 2014 , 6, 1056-64	17.6	101
385	Catalytic, enantioselective, intramolecular carbosulfenylation of olefins. Mechanistic aspects: a remarkable case of negative catalysis. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3655-63	16.4	67
384	Catalytic conjugate addition of acyl anion equivalents promoted by fluorodesilylation. <i>Organic Letters</i> , 2014 , 16, 70-3	6.2	19
383	Enantioselective construction of quaternary stereogenic carbon atoms by the Lewis base catalyzed additions of silyl ketene imines to aldehydes. <i>Chemistry - A European Journal</i> , 2014 , 20, 9268-79	4.8	27
382	Catalytic, enantioselective sulfenylation of ketone-derived enoxysilanes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13016-28	16.4	72
381	ExCage. Journal of the American Chemical Society, 2014 , 136, 10669-82	16.4	106
380	Catalytic, nucleophilic allylation of aldehydes with 2-substituted allylic acetates: carbon-carbon bond formation driven by the water-gas shift reaction. <i>Journal of Organic Chemistry</i> , 2014 , 79, 5970-86	4.2	28
379	Development and mechanism of an enantioselective bromocycloetherification reaction via Lewis base/chiral Brfisted acid cooperative catalysis. <i>Chirality</i> , 2014 , 26, 344-55	2.1	26
378	Lewis base catalyzed, enantioselective, intramolecular sulfenoamination of olefins. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8915-8	16.4	103
377	Asymmetric Construction of Quaternary Stereogenic Centers via Auxiliary-Based SN2lReactions: A Case of 1,7-Relative Stereogenesis. <i>Heterocycles</i> , 2014 , 88, 559	0.8	2
376	Lewis Base Activation of Lewis Acids - Group 13. In Situ Generation and Reaction of Borenium Ions. Organometallics, 2013 , 32,	3.8	37
375	Lewis base catalysis of the Mukaiyama directed aldol reaction: 40 years of inspiration and advances. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 9086-96	16.4	102
374	Iron-catalyzed cross-coupling of unactivated secondary alkyl thio ethers and sulfones with aryl Grignard reagents. <i>Journal of Organic Chemistry</i> , 2013 , 78, 12593-628	4.2	85
373	Organosilicon Compounds in Cross-Coupling Reactions 2013 , 475-532		2
372	Carbanion-accelerated Claisen rearrangements: asymmetric induction with chiral phosphorus-stabilized anions. <i>Journal of Organic Chemistry</i> , 2013 , 78, 66-82	4.2	20
371	A theoretical investigation on the mechanism and stereochemical course of the addition of (E)-2-butenyltrimethylsilane to acetaldehyde by electrophilic and nucleophilic activation. <i>Journal of the American Chemical Society</i> 2013 , 135, 4743-56	16.4	13

370	Catalytic, enantioselective, intramolecular carbosulfenylation of olefins. <i>Journal of the American Chemical Society</i> , 2013 , 135, 6419-22	16.4	77
369	Lewis-Base-Katalyse der gerichteten Mukaiyama-Aldolreaktion: 40 Jahre Inspiration und Fortschritt. <i>Angewandte Chemie</i> , 2013 , 125, 9256-9266	3.6	30
368	Enantioselective bromocycloetherification by Lewis base/chiral Brflsted acid cooperative catalysis. <i>Organic Letters</i> , 2012 , 14, 256-9	6.2	172
367	On the stereochemical course of the addition of allylsilanes to aldehydes. <i>Tetrahedron</i> , 2012 , 68, 7701-	7 <u>7.14</u> 8	10
366	Silylketenimine Dielseitige Nucleophile fil die katalytische asymmetrische Synthese. <i>Angewandte Chemie</i> , 2012 , 124, 10120-10132	3.6	32
365	Katalytische asymmetrische Halogenfunktionalisierung von Alkenen Leine kritische Betrachtung. <i>Angewandte Chemie</i> , 2012 , 124, 11098-11113	3.6	110
364	Silyl ketene imines: highly versatile nucleophiles for catalytic, asymmetric synthesis. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9980-92	16.4	74
363	Catalytic, asymmetric halofunctionalization of alkenesa critical perspective. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10938-53	16.4	405
362	Total Synthesis of Papulacandin D. Strategies and Tactics in Organic Synthesis, 2012, 8, 79-126	0.2	2
361	The Interplay of Invention, Observation, and Discovery in the Development of Lewis Base Activation of Lewis Acids for Catalytic Enantioselective Synthesis. <i>Topics in Organometallic Chemistry</i> , 2012 , 55-89	0.6	8
360	Effects of charge separation, effective concentration, and aggregate formation on the phase transfer catalyzed alkylation of phenol. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13415-29	16.4	44
359	Lewis Base Catalyzed Enantioselective Additions of an N-Silyl Vinylketene Imine. <i>Angewandte Chemie</i> , 2012 , 124, 3290-3293	3.6	17
358	Lewis base catalyzed enantioselective additions of an N-silyl vinylketene imine. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3236-9	16.4	33
357	Cross-Coupling with Organosilicon Compounds 2011 , 213-746		20
356	A systematic investigation of quaternary ammonium ions as asymmetric phase-transfer catalysts. Synthesis of catalyst libraries and evaluation of catalyst activity. <i>Journal of Organic Chemistry</i> , 2011 , 76, 4260-336	4.2	90
355	Catalytic asymmetric thiofunctionalization of unactivated alkenes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15308-11	16.4	145
354	A systematic investigation of quaternary ammonium ions as asymmetric phase-transfer catalysts. Application of quantitative structure activity/selectivity relationships. <i>Journal of Organic Chemistry</i> , 2011 , 76, 4337-57	4.2	93
353	Explanation of allylic silanolate salts with aromatic bromides using trialkylphosphonium tetrafluoroborate salts prepared directly from phosphineBorane adducts.	6.2	26

(2010-2011)

352	Stereocontrolled total syntheses of isodomoic acids G and H via a unified strategy. <i>Journal of Organic Chemistry</i> , 2011 , 76, 201-15	4.2	24
351	Probing the Electronic Demands of Transmetalation in the Palladium-Catalyzed Cross-Coupling of Arylsilanolates. <i>Tetrahedron</i> , 2011 , 67, 4391-4396	2.4	23
350	Cross-Coupling Reactions of Alkenylsilanols with Fluoroalkylsulfonates: Development and Optimization of a Mild and Stereospecific Coupling Process. <i>Tetrahedron Letters</i> , 2011 , 52, 2165-2168	2	11
349	Discussion Addendum for: Palladium Catalyzed Cross-Coupling of (Z)-1-Heptenyldimethylsilanol with 4-Iodoanisole: (Z)-(1-Heptenyl)-4-Methoxybenzene 2011 , 102-108		3
348	N-silyl oxyketene imines are underused yet highly versatile reagents for catalytic asymmetric synthesis. <i>Nature Chemistry</i> , 2010 , 2, 937-43	17.6	58
347	Construction of Quaternary Stereogenic Carbon Centers by the Lewis Base Catalyzed Conjugate Addition of Silyl Ketene Imines to 即Insaturated Aldehydes and Ketones. <i>Synlett</i> , 2010 , 2010, 1723-1728	8 ^{2.2}	34
346	Preparative and mechanistic studies toward the rational development of catalytic, enantioselective selenoetherification reactions. <i>Journal of the American Chemical Society</i> , 2010 , 132, 15752-65	16.4	130
345	On the stereochemical course of palladium-catalyzed cross-coupling of allylic silanolate salts with aromatic bromides. <i>Journal of the American Chemical Society</i> , 2010 , 132, 3612-20	16.4	57
344	Design, validation, and implementation of a rapid-injection NMR system. <i>Journal of Organic Chemistry</i> , 2010 , 75, 5558-72	4.2	34
343	Development of a general, sequential, ring-closing metathesis/intramolecular cross-coupling reaction for the synthesis of polyunsaturated macrolactones. <i>Journal of the American Chemical Society</i> , 2010 , 132, 11768-78	16.4	49
342	On the absolute configurational stability of bromonium and chloronium ions. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1232-3	16.4	149
341	Deconstructing Quinine. Part 1. Toward an Understanding of the Remarkable Performance of Cinchona Alkaloids in Asymmetric Phase Transfer Catalysis. <i>Heterocycles</i> , 2010 , 82, 1527	0.8	28
340	Mechanistic duality in palladium-catalyzed cross-coupling reactions of aryldimethylsilanolates. intermediacy of an 8-Si-4 arylpalladium(II) silanolate. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1243-5	16.4	32
339	Lewis base catalysis of bromo- and iodolactonization, and cycloetherification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 20655-60	11.5	207
338	Sequential Processes in Palladium-Catalyzed Silicon-Based Cross-Coupling. <i>Israel Journal of Chemistry</i> , 2010 , 50, 577-587	3.4	10
337	Total Synthesis of (+)-Papulacandin D. <i>Tetrahedron</i> , 2010 , 66, 4745-4759	2.4	67
336	Catalytic, Enantioselective Aldol Additions to Ketones <i>ChemInform</i> , 2010 , 33, 24-24		
335	Silicon-based cross-coupling reactions in the total synthesis of natural products. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2978-86	16.4	197

334	Organocerium additions to proline-derived hydrazones: synthesis of enantiomerically enriched amines. <i>Tetrahedron: Asymmetry</i> , 2010 , 21, 1278-1302		16
333	Preface to Special Issue of HETEROCYCLES - Honoring the 85th Birthday of Prof. Dr. Albert Eschenmoser. <i>Heterocycles</i> , 2010 , 82, 5	0.8	1
332	Synthesis and reactivity of enantiomerically enriched thiiranium ions. <i>Chemistry - A European Journal</i> , 2009 , 15, 11737-45	4.8	101
331	Preparation of 2,3-Disubstituted Indoles by Sequential Larock Heteroannulation and Silicon-Based Cross-Coupling Reactions. <i>Tetrahedron</i> , 2009 , 65, 3120-3129	2.4	39
330	Tandem double intramolecular [4+2]/[3+2] cycloadditions of nitroalkenes: construction of the pentacyclic core structure of daphnilactone B. <i>Tetrahedron</i> , 2009 , 65, 6535-6548	2.4	59
329	Cross-coupling reactions of aromatic and heteroaromatic silanolates with aromatic and heteroaromatic halides. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3104-18	16.4	130
328	Total syntheses of isodomoic acids G and H. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14188-	· 9 16.4	50
327	On the mechanism of Lewis base catalyzed aldol addition reactions: kinetic and spectroscopic investigations using rapid-injection NMR. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11770-87	16.4	61
326	Observation of direct sulfenium and selenenium group transfer from thiiranium and seleniranium ions to alkenes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3490-2	16.4	98
325	Palladium- (and nickel-) catalyzed vinylation of aryl halides. <i>Chemical Communications</i> , 2009 , 20-33	5.8	70
324	Catalytic, nucleophilic allylation of aldehydes with allyl acetate. Organic Letters, 2009, 11, 781-4	6.2	52
323	The interplay of invention, discovery, development, and application in organic synthetic methodology: a case study. <i>Journal of Organic Chemistry</i> , 2009 , 74, 2915-27	4.2	94
322	Vinylation with Inexpensive Silicon-Based Reagents: Preparation of 3-Vinylquinoline and 4-Vinylbenzophenone 2009 , 274-286		
321	Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes. <i>Journal of Organic Chemistry</i> , 2008 , 73, 4582-95	4.2	59
320	Chapter 1 Total synthesis of RK-397. Strategies and Tactics in Organic Synthesis, 2008, 1-34	0.2	
319	Stereoselective alkylations of chiral nitro imine and nitro hydrazone dianions. Synthesis of enantiomerically enriched 3-substituted 1-nitrocyclohexenes. <i>Journal of Organic Chemistry</i> , 2008 , 73, 9647-56	4.2	8
318	Cross-coupling of aromatic bromides with allylic silanolate salts. <i>Journal of the American Chemical Society</i> , 2008 , 130, 16382-93	16.4	91
317	Asymmetric Catalysis with Chiral Lewis Bases: A New Frontier in Main Group Chemistry. <i>Chimia</i> , 2008 , 62, 37-40	1.3	6

316	Total Synthesis of Papulacandin D. <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2008 , 66, 616-628	0.2	8
315	Neutral and cationic phosphoramide adducts of silicon tetrachloride: synthesis and characterization of their solution and solid-state structures. <i>Chemistry - A European Journal</i> , 2008 , 14, 234-9	4.8	32
314	Lewis base catalysis in organic synthesis. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 1560-638	16.4	1010
313	Lewis base activation of Lewis acids: catalytic enantioselective glycolate aldol reactions. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 1890-2	16.4	48
312	Studies on the Bisoxazoline and (-)-Sparteine Mediated Enantioselective Addition of Organolithium Reagents to Imines. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 1023-1045	5.6	36
311	Palladium-catalyzed cross-coupling of five-membered heterocyclic silanolates. <i>Journal of Organic Chemistry</i> , 2008 , 73, 1440-55	4.2	70
310	Vinylation of aromatic halides using inexpensive organosilicon reagents. Illustration of design of experiment protocols. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3690-704	16.4	81
309	Investigations into transition-state geometry in the Mukaiyama directed aldol reaction. <i>Chemistry - an Asian Journal</i> , 2008 , 3, 327-41	4.5	24
308	Palladium-catalyzed cross-coupling reactions of organosilanols and their salts: practical alternatives to boron- and tin-based methods. <i>Accounts of Chemical Research</i> , 2008 , 41, 1486-99	24.3	415
307	(R)-3-METHYL-3-PHENYL-1-PENTENE VIA CATALYTIC ASYMMETRIC HYDROVINYLATION. <i>Organic Syntheses</i> , 2008 , 85, 248-266	1.2	27
306	ASYMMETRIC SYNTHESIS OF THE ABCD RING SYSTEM OF DAPHNILACTONE B VIA A TANDEM, DOUBLE INTRAMOLECULAR, [4+2]/[3+2] CYCLOADDITION STRATEGY. <i>Heterocycles</i> , 2008 , 76, 143	0.8	24
305	Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions. Journal of Organic Chemistry, 2007 , 72, 5668-88	4.2	94
304	Enantioselective construction of quaternary stereogenic carbons by the Lewis base catalyzed additions of silyl ketene imines to aldehydes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 14864	1 ^{-16.4}	93
303	Total synthesis of papulacandin D. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2774-6	16.4	107
302	Sequential silylcarbocyclization/silicon-based cross-coupling reactions. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3737-44	16.4	51
301	Lewis acid-promoted conjugate addition of dienol silyl ethers to nitroalkenes: synthesis of 3-substituted azepanes. <i>Journal of Organic Chemistry</i> , 2007 , 72, 7050-3	4.2	38
300	Lewis base activation of Lewis acids: development of a Lewis base catalyzed selenolactonization. <i>Organic Letters</i> , 2007 , 9, 3801-4	6.2	97
299	Cumulative Title Index. <i>Topics in Stereochemistry</i> , 2007 , 297-302		

298	Phosphine Oxides as Stabilizing Ligands for the Palladium-Catalyzed Cross-Coupling of Potassium Aryldimethylsilanolates. <i>Tetrahedron</i> , 2007 , 63, 5730-5738	2.4	49
297	Unexpected ambidoselectivity in crossed-aldol reactions of Exy aldehyde trichlorosilyl enolates. <i>Tetrahedron</i> , 2007 , 63, 8636-8644	2.4	13
296	Molecular Chirality. <i>Topics in Stereochemistry</i> , 2007 , 1-82		37
295	2,4,6,8-Tetraethenyl-2,4,6,8-tetramethylcyclotetrasiloxane 2007 ,		1
294	Stereoselective Reactions with Catalytic Antibodies. <i>Topics in Stereochemistry</i> , 2007 , 83-135		4
293	Asymmetric Amplification. <i>Topics in Stereochemistry</i> , 2007 , 257-296		21
292	Stereoelectronic Effects of the Group 4 Metal Substituents in Organic Chemistry. <i>Topics in Stereochemistry</i> , 2007 , 137-200		8
291	Carbonylative ring opening of terminal epoxides at atmospheric pressure. <i>Journal of Organic Chemistry</i> , 2007 , 72, 9630-4	4.2	35
29 0	Asymmetric Catalysis with Chiral Lanthanoid Complexes. <i>Topics in Stereochemistry</i> , 2007 , 201-255		1
289	Hexamethylcyclotrisiloxane 2007,		2
289	Hexamethylcyclotrisiloxane 2007, Preparation of chiral bipyridine bis-N-oxides by oxidative dimerization of chiral pyridine N-oxides. Tetrahedron: Asymmetry, 2006, 17, 687-707		37
	Preparation of chiral bipyridine bis-N-oxides by oxidative dimerization of chiral pyridine N-oxides. Tetrahedron: Asymmetry, 2006, 17, 687-707	4.8	
288	Preparation of chiral bipyridine bis-N-oxides by oxidative dimerization of chiral pyridine N-oxides. <i>Tetrahedron: Asymmetry</i> , 2006 , 17, 687-707 Palladium-catalyzed cross-coupling reactions of silanolates: a paradigm shift in silicon-based		140
288	Preparation of chiral bipyridine bis-N-oxides by oxidative dimerization of chiral pyridine N-oxides. <i>Tetrahedron: Asymmetry</i> , 2006 , 17, 687-707 Palladium-catalyzed cross-coupling reactions of silanolates: a paradigm shift in silicon-based cross-coupling reactions. <i>Chemistry - A European Journal</i> , 2006 , 12, 4954-63		140
288 287 286	Preparation of chiral bipyridine bis-N-oxides by oxidative dimerization of chiral pyridine N-oxides. <i>Tetrahedron: Asymmetry</i> , 2006 , 17, 687-707 Palladium-catalyzed cross-coupling reactions of silanolates: a paradigm shift in silicon-based cross-coupling reactions. <i>Chemistry - A European Journal</i> , 2006 , 12, 4954-63 Reduction of Allylpalladium(II)chloride Dimer by Formation of Allyloxyßilanes. <i>Synlett</i> , 2006 , 2006, 29212		37 140
288 287 286	Preparation of chiral bipyridine bis-N-oxides by oxidative dimerization of chiral pyridine N-oxides. <i>Tetrahedron: Asymmetry</i> , 2006 , 17, 687-707 Palladium-catalyzed cross-coupling reactions of silanolates: a paradigm shift in silicon-based cross-coupling reactions. <i>Chemistry - A European Journal</i> , 2006 , 12, 4954-63 Reduction of Allylpalladium(II)chloride Dimer by Formation of Allyloxylbilanes. <i>Synlett</i> , 2006 , 2006, 2921 ₂ Homo- and Heterochirality in Crystals. <i>Topics in Stereochemistry</i> , 2006 , 81-134 Stereoselective Thermal Solid State Reactions. <i>Topics in Stereochemistry</i> , 2006 , 303-350		37 140 13
288 287 286 285	Preparation of chiral bipyridine bis-N-oxides by oxidative dimerization of chiral pyridine N-oxides. <i>Tetrahedron: Asymmetry</i> , 2006 , 17, 687-707 Palladium-catalyzed cross-coupling reactions of silanolates: a paradigm shift in silicon-based cross-coupling reactions. <i>Chemistry - A European Journal</i> , 2006 , 12, 4954-63 Reduction of Allylpalladium(II)chloride Dimer by Formation of Allyloxylsilanes. <i>Synlett</i> , 2006 , 2006, 29212 Homo- and Heterochirality in Crystals. <i>Topics in Stereochemistry</i> , 2006 , 81-134 Stereoselective Thermal Solid State Reactions. <i>Topics in Stereochemistry</i> , 2006 , 303-350 A general synthesis of N-vinyl nitrones. <i>Journal of Organic Chemistry</i> , 2006 , 71, 6211-20 Chiral phosphoramide-catalyzed enantioselective addition of allylic trichlorosilanes to aldehydes.	29 28	37 140 13 20 8

(2006-2006)

280	Lewis base activation of Lewis acids. Vinylogous aldol addition reactions of conjugated N,O-silyl ketene acetals to aldehydes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 1038-9	16.4	65
279	Palladium-catalyzed cross-coupling reactions of heterocyclic silanolates with substituted aryl iodides and bromides. <i>Organic Letters</i> , 2006 , 8, 793-5	6.2	68
278	Stereospecific palladium-catalyzed cross-coupling of (E)- and (Z)-alkenylsilanolates with aryl chlorides. <i>Journal of the American Chemical Society</i> , 2006 , 128, 15958-9	16.4	73
277	On the mechanism of the selenolactonization reaction with selenenyl halides. <i>Journal of Organic Chemistry</i> , 2006 , 71, 7293-306	4.2	62
276	The CH/IHydrogen Bond: An Important Molecular Force in Controlling the Crystal Conformation of Organic Compounds and Three-Dimensional Structure of Biopolymers. <i>Topics in Stereochemistry</i> , 2006 , 255-302		25
275	Synthesis, X-ray crystallography, and computational analysis of 1-azafenestranes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 11620-30	16.4	35
274	Vinylation of aryl bromides using an inexpensive vinylpolysiloxane. Organic Letters, 2006, 8, 63-6	6.2	67
273	Chiral phosphoramide-catalyzed aldol additions of ketone trichlorosilyl enolates. Mechanistic aspects. <i>Journal of Organic Chemistry</i> , 2006 , 71, 3904-22	4.2	66
272	Chiral phosphoramide-catalyzed enantioselective addition of allylic trichlorosilanes to aldehydes. Preparative and mechanistic studies with monodentate phosphorus-based amides. <i>Journal of Organic Chemistry</i> , 2006 , 71, 1513-22	4.2	85
271	Lewis base catalyzed addition of trimethylsilyl cyanide to aldehydes. <i>Journal of Organic Chemistry</i> , 2006 , 71, 4002-5	4.2	84
270	On the mechanism of the Skraup-Doebner-Von Miller quinoline synthesis. <i>Journal of Organic Chemistry</i> , 2006 , 71, 1668-76	4.2	163
269	Supramolecular Networks of Porphyrins. <i>Topics in Stereochemistry</i> , 2006 , 49-80		1
268	Cumulative Title Index. <i>Topics in Stereochemistry</i> , 2006 , 397-403		
267	Engineering Stereospecific Reactions in Crystals: Synthesis of Compounds with Adjacent Stereogenic Quaternary Centers by Photodecarbonylation of Crystalline Ketones. <i>Topics in Stereochemistry</i> , 2006 , 205-253		25
266	Supramolecular Synthesis of 1D Chains and 2D Layers in Hydrogen Bond Networks of Ureas and 2-Pyrimidinones. <i>Topics in Stereochemistry</i> , 2006 , 135-176		1
265	Chiral Auxiliaries Powerful for Both Enantiomer Resolution and Determination of Absolute Configuration by X-Ray Crystallography. <i>Topics in Stereochemistry</i> , 2006 , 177-203		9
264	Stereochemistry of Molecules in Inclusion Crystals. <i>Topics in Stereochemistry</i> , 2006 , 1-29		
263	Torsional Motion of Stilbene-type Molecules in Crystals. <i>Topics in Stereochemistry</i> , 2006 , 31-47		13

262	Crystal Structures and Functionalities of Platinum(II) Complexes Controlled by Various Intermolecular Interactions. <i>Topics in Stereochemistry</i> , 2006 , 351-373		0
261	A qualitative examination of the effects of silicon substituents on the efficiency of cross-coupling reactions. <i>Journal of Organic Chemistry</i> , 2006 , 71, 8500-9	4.2	37
260	(R,R)-2,2?-Bispyrrolidine and (S,S)-2,2?-Bispyrrolidine: Useful Ligands for Asymmetric Synthesis 2006 , 121-130		3
259	Chapter 4 Application of silicon-assisted intramolecular cross-coupling in total synthesis of (+)-brasilenyne. <i>Strategies and Tactics in Organic Synthesis</i> , 2005 , 100-136	0.2	
258	Synthesis of 3,4,5-trisubstituted isoxazoles via sequential [3 + 2] cycloaddition/silicon-based cross-coupling reactions. <i>Journal of Organic Chemistry</i> , 2005 , 70, 2839-42	4.2	77
257	Lewis base catalyzed, enantioselective aldol addition of methyl trichlorosilyl ketene acetal to ketones. <i>Journal of Organic Chemistry</i> , 2005 , 70, 5235-48	4.2	114
256	Sequential cross-coupling of 1,4-bissilylbutadienes: synthesis of unsymmetrical 1,4-disubstituted 1,3-butadienes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 8004-5	16.4	127
255	Lewis base catalyzed aldol additions of chiral trichlorosilyl enolates and silyl enol ethers. <i>Journal of Organic Chemistry</i> , 2005 , 70, 10823-40	4.2	36
254	Mechanistic insights into the chiral phosphoramide-catalyzed, enantioselective crossed-aldol reactions of aldehydes. <i>Journal of Organic Chemistry</i> , 2005 , 70, 10393-9	4.2	29
253	Total synthesis of RK-397. Journal of the American Chemical Society, 2005 , 127, 8971-3	16.4	114
252	Lewis base catalyzed enantioselective aldol addition of acetaldehyde-derived silyl enol ether to aldehydes. <i>Journal of Organic Chemistry</i> , 2005 , 70, 10190-3	4.2	71
251	Catalytic, enantioselective alpha-additions of isocyanides: Lewis base catalyzed Passerini-type reactions. <i>Journal of Organic Chemistry</i> , 2005 , 70, 9667-76	4.2	105
250	Lewis base activation of Lewis acids: catalytic, enantioselective addition of silyl ketene acetals to aldehydes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3774-89	16.4	184
249	Intramolecular [4 + 2] cycloaddition of nitroalkenes for construction of vicinal quaternary stereocenters. <i>Organic Letters</i> , 2005 , 7, 5617-20	6.2	17
248	Catalytic, enantioselective, vinylogous aldol reactions. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4682-98	16.4	398
247	Synthesis of cis,cis,cis,cis-[5.5.5.4]-1-azafenestrane with discovery of an unexpected dyotropic rearrangement. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 3732-6	16.4	34
246	Katalytische enantioselektive vinyloge Aldolreaktionen. <i>Angewandte Chemie</i> , 2005 , 117, 4760-4777	3.6	149

227

Platinum Catalyzed Hydrosilylation and Palladium Catalyzed Cross-Coupling: One-Pot 244 Hydroarylation of 1-Heptyne to (E)-1-(1-Heptenyl)-4-methoxybenzene 2005, 54-62 Palladium Catalyzed Cross-Coupling of (Z)-1-Heptenyldimethylsilanol with 4-Iodoanisole: 243 (Z)-1-Heptenyl)-4-methoxybenzene **2005**, 42-53 Lewis Base Activation of Lewis Acids: Vinylogous Aldol Additions of Silyl Dienol Ethers to 242 2.2 30 Aldehydes. Synlett, 2004, 2004, 2411-2416 Cross-Coupling of Alkynylsilanols with Aryl Halides Promoted by Potassium Trimethylsilanolate.. 241 ChemInform, **2004**, 35, no Organosilicon Reagents: Synthesis and Application to Palladium-Catalyzed Cross-Coupling 240 2 Reactions. ChemInform, 2004, 35, no Sequential ring-closing metathesis/Pd-catalyzed, Si-assisted cross-coupling reactions: general synthesis of highly substituted unsaturated alcohols and medium-sized rings containing a 2.4 55 1,3-cisdis diene unit. *Tetrahedron*, **2004**, 60, 9695-9708 Chiral phosphoramide-catalyzed, enantioselective, directed cross-aldol reactions of aldehydes. 238 11.5 49 Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5439-44 Palladium-catalyzed cross-coupling reactions of 2-indolyldimethylsilanols with substituted aryl 6.2 62 237 halides. Organic Letters, 2004, 6, 3649-52 Fluoride-promoted cross-coupling reactions of alkenylsilanols. Elucidation of the mechanism through spectroscopic and kinetic analysis. *Journal of the American Chemical Society*, **2004**, 126, 4865-75 236 78 Cross-coupling reactions of alkenylsilanolates. Investigation of the mechanism and identification of key intermediates through kinetic analysis. *Journal of the American Chemical Society*, **2004**, 126, 4876-82 16.4 83 235 Total synthesis of (+)-brasilenyne. Application of an intramolecular silicon-assisted cross-coupling 234 16.4 100 reaction. Journal of the American Chemical Society, 2004, 126, 12432-40 Memory of Chirality: Asymmetric Induction Based on the Dynamic Chirality of Enolates. *Topics in* 66 233 Stereochemistry, **2003**, 175-205 Transition-Metal-Templated Synthesis of Rotaxanes. Topics in Stereochemistry, 2003, 125-173 232 43 Cumulative Title Index. *Topics in Stereochemistry*, **2003**, 363-369 231 The First Catalytic, Asymmetric Additions of Isocyanides. Lewis-Base-Catalyzed, Enantioselective 230 1 Passerini-Type Reactions.. ChemInform, 2003, 34, no Understanding the correlation of structure and selectivity in the chiral-phosphoramide-catalyzed 16.4 enantioselective allylation reactions: solution and solid-state structural studies of 229 90 bisphosphoramide.SnCl(4) complexes. Journal of the American Chemical Society, 2003, 125, 2208-16 228 Chirality in Fullerene Chemistry. Topics in Stereochemistry, 2003, 1-124 22

Nitronates. Chemistry of Heterocyclic Compounds (New York, 1951): A Series of Monographs, 2003, 83-167

226	Asymmetric Aldol Reactions Using Aldolases. <i>Topics in Stereochemistry</i> , 2003 , 267-342		39
225	Lewis base activation of Lewis acids. Vinylogous aldol reactions. <i>Journal of the American Chemical Society</i> , 2003 , 125, 7800-1	16.4	135
224	Cross-coupling reactions of arylsilanols with substituted aryl halides. <i>Organic Letters</i> , 2003 , 5, 1357-60	6.2	93
223	Tandem double intramolecular [4+2]/[3+2] cycloadditions of nitroalkenes. The fused/bridged mode. <i>Journal of Organic Chemistry</i> , 2003 , 68, 8015-24	4.2	29
222	Palladium-catalyzed silylation of aryl bromides leading to functionalized aryldimethylsilanols. <i>Organic Letters</i> , 2003 , 5, 3483-6	6.2	91
221	Cross-coupling of alkynylsilanols with aryl halides promoted by potassium trimethylsilanolate. <i>Journal of Organic Chemistry</i> , 2003 , 68, 9151-4	4.2	46
220	Tandem intramolecular silylformylation and silicon-assisted cross-coupling reactions. synthesis of geometrically defined alpha,beta-unsaturated aldehydes. <i>Journal of Organic Chemistry</i> , 2003 , 68, 5153-	9 ^{4.2}	55
219	Palladium-catalyzed conjugate addition of organosiloxanes to alpha,beta-unsaturated carbonyl compounds and nitroalkenes. <i>Journal of Organic Chemistry</i> , 2003 , 68, 6997-7003	4.2	51
218	Stereoselective aldol additions of achiral ethyl ketone-derived trichlorosilyl enolates. <i>Journal of Organic Chemistry</i> , 2003 , 68, 5045-55	4.2	37
217	Intramolecular syn and anti hydrosilylation and silicon-assisted cross-coupling: highly regio- and stereoselective synthesis of trisubstituted allylic alcohols. <i>Organic Letters</i> , 2003 , 5, 1119-22	6.2	56
216	The first catalytic, asymmetric alpha-additions of isocyanides. Lewis-base-catalyzed, enantioselective Passerini-type reactions. <i>Journal of the American Chemical Society</i> , 2003 , 125, 7825-7	16.4	144
215	Catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones. <i>Chemical Reviews</i> , 2003 , 103, 2763-94	68.1	1017
214	2-silyloxy-1,2-oxazines, a new type of acetals of conjugated nitroso alkenes. <i>Journal of Organic Chemistry</i> , 2003 , 68, 9477-80	4.2	36
213	Catalytic enantioselective allylation with chiral Lewis bases. Chemical Communications, 2003, 167-70	5.8	77
212	Chiral Discrimination during Crystallization. <i>Topics in Stereochemistry</i> , 2003 , 207-265		21
211	Lewis base activation of Lewis acids. Catalytic enantioselective addition of silyl enol ethers of achiral methyl ketones to aldehydes. <i>Organic Letters</i> , 2003 , 5, 2303-6	6.2	58
210	Synthesis of cis,cis,cis,cis-[5.5.5.5]-1-Azafenestrane. <i>Angewandte Chemie</i> , 2002 , 114, 4296-4299	3.6	11
209	Synthesis of cis,cis,cis,cis-[5.5.5.5]-1-azafenestrane. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 4122-5	16.4	17

(2001-2002)

208	Stereospecific cleavage of carbon-phosphorus bonds: stereochemical course of the phosphinoyl curtius (Harger) reaction. <i>Chirality</i> , 2002 , 14, 241-57	2.1	3
207	Efficient and stereoselective cross-coupling with highly substituted alkenylsilanols. <i>Journal of Organometallic Chemistry</i> , 2002 , 653, 98-104	2.3	31
206	Inter- and Intramolecular [4+2] Cycloaddition of Nitroalkenes with Allenylsilanes. A Case of Unexpected Regioselectivity. <i>Heterocycles</i> , 2002 , 58, 129	0.8	8
205	Lewis base activation of lewis acids. Addition of silyl ketene acetals to aldehydes. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13405-7	16.4	130
204	Cross-coupling reactions of alkenylsilanols with fluoroalkylsulfonates. <i>Organic Letters</i> , 2002 , 4, 3771-4	6.2	61
203	Asymmetric construction of quaternary centers by enantioselective allylation: application to the synthesis of the serotonin antagonist LY426965. <i>Organic Letters</i> , 2002 , 4, 1951-3	6.2	104
202	Chiral fluoro ketones for catalytic asymmetric epoxidation of alkenes with oxone. <i>Journal of Organic Chemistry</i> , 2002 , 67, 3479-86	4.2	112
201	Diastereoselective aldol additions of chiral beta-hydroxy ethyl ketone enolates catalyzed by Lewis bases. <i>Organic Letters</i> , 2002 , 4, 3473-6	6.2	27
200	The effects of a remote stereogenic center in the Lewis base catalyzed aldol additions of chiral trichlorosilyl enolates. <i>Organic Letters</i> , 2002 , 4, 3477-80	6.2	39
199	Intramolecular anti-hydrosilylation and silicon-assisted cross-coupling: highly regio- and stereoselective synthesis of trisubstituted homoallylic alcohols. <i>Organic Letters</i> , 2002 , 4, 4163-6	6.2	62
198	Catalytic, enantioselective aldol additions to ketones. <i>Journal of the American Chemical Society</i> , 2002 , 124, 4233-5	16.4	190
197	Design and implementation of new, silicon-based, cross-coupling reactions: importance of silicon-oxygen bonds. <i>Accounts of Chemical Research</i> , 2002 , 35, 835-46	24.3	379
196	Intramolecular silicon-assisted cross-coupling reactions: general synthesis of medium-sized rings containing a 1,3-cis-cis diene unit. <i>Journal of the American Chemical Society</i> , 2002 , 124, 2102-3	16.4	71
195	Intramolecular silicon-assisted cross-coupling: total synthesis of (+)-brasilenyne. <i>Journal of the American Chemical Society</i> , 2002 , 124, 15196-7	16.4	68
194	Beneficial Effect of ortho-Methoxy Groups in the Asymmetric Ring Opening of meso Epoxides with Silicon Tetrachloride Catalyzed by Chiral ortho-Methoxyphenyldiazaphosphonamide Lewis Bases Response to the Communication by G. Buono et al <i>Angewandte Chemie</i> , 2001 , 113, 2315-2316	3.6	2
193	The First Catalytic, Diastereoselective, and Enantioselective Crossed-Aldol Reactions of Aldehydes. <i>Angewandte Chemie</i> , 2001 , 113, 4895-4898	3.6	28
192	Beneficial Effect of ortho-Methoxy Groups in the Asymmetric Ring Opening of meso Epoxides with Silicon Tetrachloride Catalyzed by Chiral ortho-Methoxyphenyldiazaphosphonamide Lewis Bases Response to the Communication by G. Buono et al. <i>Angewandte Chemie - International Edition</i> , 2001	16.4	23
191	The First Catalytic, Diastereoselective, and Enantioselective Crossed-Aldol Reactions of Aldehydes We are grateful to the National Science Foundation for generous financial support (NSF CHE 9803124) <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 4759-4762	16.4	116

190	Cross-coupling of vinylpolysiloxanes with aryl iodides. <i>Journal of Organometallic Chemistry</i> , 2001 , 624, 372-375	2.3	50
189	Diastereoselective Aldol Addition Reactions of a Chiral Methyl Ketone Trichlorosilyl Enolate under Lewis Base Catalysis. <i>Synlett</i> , 2001 , 2001, 1024-1029	2.2	22
188	Studies on the reduction and hydrolysis of nitroso acetals. <i>Canadian Journal of Chemistry</i> , 2001 , 79, 160)6⊙1 ∮ 16	5 15
187	Highly stereoselective hydrocarbation of terminal alkynes via Pt-catalyzed hydrosilylation/Pd-catalyzed cross-coupling reactions. <i>Organic Letters</i> , 2001 , 3, 1073-6	6.2	131
186	Catalytic, enantioselective addition of substituted allylic trichlorosilanes using a rationally-designed 2,2'-bispyrrolidine-based bisphosphoramide. <i>Journal of the American Chemical Society</i> , 2001 , 123, 9488-	.9 ^{16.4}	185
185	Tandem double intramolecular [4 + 2]/[3 + 2] cycloadditions of nitroalkenes. <i>Organic Letters</i> , 2001 , 3, 2907-10	6.2	29
184	Intramolecular hydrosilylation and silicon-assisted cross-coupling: an efficient route to trisubstituted homoallylic alcohols. <i>Organic Letters</i> , 2001 , 3, 61-4	6.2	91
183	Highly diastereoselective aldol additions of a chiral ethyl ketone enolate under Lewis base catalysis. <i>Organic Letters</i> , 2001 , 3, 2201-4	6.2	18
182	Lewis base activation of Lewis acids: catalytic enantioselective allylation and propargylation of aldehydes. <i>Journal of the American Chemical Society</i> , 2001 , 123, 6199-200	16.4	177
181	Sequential ring-closing metathesis and silicon-assisted cross-coupling reactions: stereocontrolled synthesis of highly substituted unsaturated alcohols. <i>Organic Letters</i> , 2001 , 3, 1749-52	6.2	82
180	Fluoride-free cross-coupling of organosilanols. <i>Journal of the American Chemical Society</i> , 2001 , 123, 643	39 <u>r</u> €04	126
179	Synthesis of (+)-1-epiaustraline. <i>Journal of Organic Chemistry</i> , 2001 , 66, 4276-84	4.2	70
178	Beneficial Effect of ortho-Methoxy Groups in the Asymmetric Ring Opening of meso Epoxides with Silicon Tetrachloride Catalyzed by Chiral ortho-Methoxyphenyldiazaphosphonamide Lewis Bases Response to the Communication by G. Buono et al. We are grateful to the National Science	16.4	
177	Foundation (CHE-9803124) for generous financial support. Cory M. Stiff is thanked for preliminary Synthesis of (-)-7-epiaustraline and (-)-1-epicastanospermine. <i>Journal of Organic Chemistry</i> , 2000 , 65, 2887-96	4.2	64
176	Synthesis of (+)-casuarine. <i>Journal of Organic Chemistry</i> , 2000 , 65, 2875-86	4.2	90
175	1-Methyl-1-vinyl- and 1-Methyl-1-(prop-2-enyl)silacyclobutane: Reagents for Palladium-Catalyzed Cross-Coupling Reactions of Aryl Halides. <i>Synthesis</i> , 2000 , 2000, 999-1003	2.9	49
174	Convergence of mechanistic pathways in the Palladium(0)-catalyzed cross-coupling of alkenylsilacyclobutanes and alkenylsilanols. <i>Organic Letters</i> , 2000 , 2, 2491-4	6.2	89
173	Asymmetric catalysis of aldol reactions with chiral lewis bases. <i>Accounts of Chemical Research</i> , 2000 , 33, 432-40	24.3	267

(1998-2000)

172	The Chemistry of Trichlorosilyl Enolates. Aldol Addition Reactions of Methyl Ketones. <i>Journal of the American Chemical Society</i> , 2000 , 122, 8837-8847	16.4	92
171	On the Mechanism of Catalytic, Enantioselective Allylation of Aldehydes with Chlorosilanes and Chiral Lewis Bases. <i>Journal of the American Chemical Society</i> , 2000 , 122, 12021-12022	16.4	97
170	Diastereoselective alkylations of chiral, phosphorus-stabilized carbanions: N-alkyl substituent effects in P-alkyl-1,3,2-diazaphosphorinane 2-oxides. <i>Canadian Journal of Chemistry</i> , 2000 , 78, 673-688	0.9	12
169	Mild and general cross-coupling of (alpha-Alkoxyvinyl)silanols and -silyl hydrides. <i>Organic Letters</i> , 2000 , 2, 3221-4	6.2	111
168	Highly stereospecific, palladium-catalyzed cross-coupling of alkenylsilanols. <i>Organic Letters</i> , 2000 , 2, 565-8	6.2	153
167	Effect of ligand structure in the bisoxazoline mediated asymmetric addition of methyllithium to imines. <i>Journal of Organic Chemistry</i> , 2000 , 65, 5875-8	4.2	99
166	The Development of Chiral, Nonracemic Dioxiranes for the Catalytic, Enantioselective Epoxidation of Alkenes. <i>Synlett</i> , 1999 , 1999, 847-859	2.2	124
165	Solid state and solution structural studies of chiral phosphoramide-tin complexes relevant to Lewis base catalyzed aldol reactions. <i>Tetrahedron</i> , 1999 , 55, 8727-8738	2.4	44
164	Synthesis of (+)-casuarine. <i>Organic Letters</i> , 1999 , 1, 1311-4	6.2	35
163	Chiral Phosphoramide-Catalyzed Aldol Additions of Ketone Enolates. Preparative Aspects. <i>Journal of the American Chemical Society</i> , 1999 , 121, 4982-4991	16.4	92
162	Tandem Cycloaddition Chemistry of Nitroalkenes: Preparative and Theoretical Studies on the Stereochemical Course of [3 + 2] Cycloaddition of Cyclic Nitronates. <i>Journal of Organic Chemistry</i> , 1999 , 64, 884-901	4.2	34
161	Enantioselective Total Syntheses of (+)-Castanospermine, (+)-6-Epicastanospermine, (+)-Australine, and (+)-3-Epiaustraline. <i>Journal of the American Chemical Society</i> , 1999 , 121, 3046-3056	16.4	98
160	Tandem Cycloaddition Chemistry of Nitroalkenes: Probing the Remarkable Stereochemical Influence of the Lewis Acid. <i>Journal of Organic Chemistry</i> , 1999 , 64, 1610-1619	4.2	27
159	Synthesis of Unsymmetrical Biaryls from Arylsilacyclobutanes. <i>Organic Letters</i> , 1999 , 1, 1495-1498	6.2	83
158	Highly Stereospecific, Cross-Coupling Reactions of Alkenylsilacyclobutanes. <i>Journal of the American Chemical Society</i> , 1999 , 121, 5821-5822	16.4	171
157	Synthesis of Phosphoramides for the Lewis Base-Catalyzed Allylation and Aldol Addition Reactions. Journal of Organic Chemistry, 1999 , 64, 1958-1967	4.2	89
156	Asymmetric Catalysis with Chiral Lewis Bases 1999 , 7-15		
155	Tandem [4 + 2]/[3 + 2] Cycloadditions with Nitroethylene. <i>Journal of Organic Chemistry</i> , 1998 , 63, 3045-	30/50	42

154	Asymmetric aldol additions catalyzed by chiral phosphoramides: Electronic effects of the aldehyde component. <i>Tetrahedron</i> , 1998 , 54, 10389-10402	2.4	46
153	Solution and Solid-State Studies of a Chiral Zinc-Sulfonamide Complex Relevant to Enantioselective Cyclopropanations. <i>Angewandte Chemie - International Edition</i> , 1998 , 37, 1149-1151	16.4	66
152	Solution and solid-state structures of lithiated cyclic phosphonates. <i>Heteroatom Chemistry</i> , 1998 , 9, 209	-2.128	15
151	The Chemistry of Trichlorosilyl Enolates. 6. Mechanistic Duality in the Lewis Base-Catalyzed Aldol Addition Reaction. <i>Journal of the American Chemical Society</i> , 1998 , 120, 12990-12991	16.4	68
150	6-Oxo-1,1,4,4-tetramethyl-1,4-diazepinium Salts. A New Class of Catalysts for Efficient Epoxidation of Olefins with Oxone Journal of Organic Chemistry, 1998, 63, 2810-2811	4.2	52
149	Synthesis of (1R,2R,3R,7R,7aR)-Hexahydro-3-(Hydroxymethyl)-1H-pyrrolizine-1,2,7-triol: 7-Epiaustraline. <i>Journal of the American Chemical Society</i> , 1998 , 120, 7357-7358	16.4	37
148	Tandem Inter [4 + 2]/Intra [3 + 2] Cycloadditions of Nitroalkenes. The Bridged Mode (beta-Tether). Journal of Organic Chemistry, 1998 , 63, 6167-6177	4.2	22
147	Highly 1,4-Syn Diastereoselective, Phosphoramide-Catalyzed Aldol Additions of Chiral Methyl Ketone Enolates [] Journal of Organic Chemistry, 1998, 63, 9524-9527	4.2	31
146	Tandem Inter [4 + 2]/Intra [3 + 2] Cycloadditions of Nitroalkenes. Asymmetric Synthesis of Highly Functionalized Aminocyclopentanes Using the Bridged Mode (beta-Tether) Process. <i>Journal of Organic Chemistry</i> , 1998 , 63, 6178-6195	4.2	27
145	Tandem Inter [4 + 2]/Intra [3 + 2] Cycloadditions. 17. The Spiro Mode. Efficient and Highly Selective Synthesis of Azapropellanes. <i>Journal of Organic Chemistry</i> , 1998 , 63, 1604-1618	4.2	50
144	Enantioselective Ring Opening of Epoxides with Silicon Tetrachloride in the Presence of a Chiral Lewis Base. <i>Journal of Organic Chemistry</i> , 1998 , 63, 2428-2429	4.2	157
143	Preparation of Chlorosilyl Enolates [] Journal of Organic Chemistry, 1998, 63, 9517-9523	4.2	28
142	Lewis Base-Catalyzed, Asymmetric Aldol Additions of Methyl Ketone Enolates <i>Journal of Organic Chemistry</i> , 1998 , 63, 918-919	4.2	60
141	The Chemistry of Chlorosilyl Enolates 3.: Variation of the Silyl Group and the Effect on Rate and Enantiomeric Excess of Acetate Aldol Additions. <i>Synlett</i> , 1997 , 1997, 1087-1089	2.2	18
140	Asymmetric Construction of a Quaternary Carbon Center by Tandem [4 + 2]/[3 + 2] Cycloaddition of a Nitroalkene. The Total Synthesis of (Mesembrine. <i>Journal of Organic Chemistry</i> , 1997 , 62, 1675-1686	4.2	81
139	Tandem Inter [4 + 2]/Intra [3 + 2] Cycloadditions of Nitroalkenes. 15. The Bridged Mode (⊞ether). Journal of Organic Chemistry, 1997 , 62, 4610-4628	4.2	56
138	Enantioselective Cyclopropanation of Allylic Alcohols. The Effect of Zinc Iodide. <i>Journal of Organic Chemistry</i> , 1997 , 62, 3390-3401	4.2	86
137	Tandem [4 + 2]/[3 + 2] Cycloadditions of Nitroalkenes. 13. The Synthesis of (⊯Detoxinine. <i>Journal of Organic Chemistry</i> , 1997 , 62, 1668-1674	4.2	63

136	Catalytic, Enantioselective Cyclopropanation of Allylic Alcohols. Substrate Generality. <i>Journal of Organic Chemistry</i> , 1997 , 62, 584-594	4.2	100
135	Tandem [4 + 2]/[3 + 2] Cycloadditions of Nitroalkenes. 11. The Synthesis of (+)-Crotanecine. <i>Journal of the American Chemical Society</i> , 1997 , 119, 125-137	16.4	72
134	Dioxiranes Are the Active Agents in Ketone-Catalyzed Epoxidations with Oxone. <i>Journal of Organic Chemistry</i> , 1997 , 62, 8964-8965	4.2	30
133	Tandem Inter [4 + 2]/Intra [3 + 2] Cycloadditions of Nitroalkenes. A Versatile Asymmetric Synthesis of Highly Functionalized Aminocyclopentanes. <i>Journal of Organic Chemistry</i> , 1997 , 62, 7086-7087	4.2	23
132	Tandem [4 + 2]/[3 + 2] Cycloadditions of Nitroalkenes. 12. Synthesis of (-)-Platynecine. <i>Journal of Organic Chemistry</i> , 1997 , 62, 435-436	4.2	28
131	Cyclopropanation with Diazomethane and Bis(oxazoline)palladium(II) Complexes. <i>Journal of Organic Chemistry</i> , 1997 , 62, 3375-3389	4.2	215
130	Catalytic Epoxidation of Alkenes with Oxone. 2. Fluoro Ketones. <i>Journal of Organic Chemistry</i> , 1997 , 62, 8288-8289	4.2	106
129	The Chemistry of Trichlorosilyl Enolates. 2. Highly-Selective Asymmetric Aldol Additions of Ketone Enolates. <i>Journal of the American Chemical Society</i> , 1997 , 119, 2333-2334	16.4	126
128	Tandem [4 + 2]/[3 + 2] Cycloadditions of Nitroalkenes. 9. Synthesis of (PRosmarinecine. <i>Journal of the American Chemical Society</i> , 1996 , 118, 8266-8277	16.4	67
127	Tandem [4 + 2]/[3 + 2] Cycloadditions of Nitroalkenes. 10. trans-2-(1-Methyl-1-phenylethyl)cyclohexanol as a New Auxiliary. <i>Journal of Organic Chemistry</i> , 1996 , 61, 6727-6729	4.2	9
127	trans-2-(1-Methyl-1-phenylethyl)cyclohexanol as a New Auxiliary. <i>Journal of Organic Chemistry</i> ,	4.2	9
Í	trans-2-(1-Methyl-1-phenylethyl)cyclohexanol as a New Auxiliary. <i>Journal of Organic Chemistry</i> , 1996 , 61, 6727-6729 An Ab initio Study of the Pt Bond Rotation in Phosphoryl- and Thiophosphoryl-Stabilized		34
126	trans-2-(1-Methyl-1-phenylethyl)cyclohexanol as a New Auxiliary. <i>Journal of Organic Chemistry</i> , 1996 , 61, 6727-6729 An Ab initio Study of the Pt Bond Rotation in Phosphoryl- and Thiophosphoryl-Stabilized Carbanions: Five- and Six-Membered Heterocycles. <i>Journal of Organic Chemistry</i> , 1996 , 61, 8551-8563 Chemistry of Trichlorosilyl Enolates. 1. New Reagents for Catalytic, Asymmetric Aldol Additions.	4.2	34
126	trans-2-(1-Methyl-1-phenylethyl)cyclohexanol as a New Auxiliary. <i>Journal of Organic Chemistry</i> , 1996, 61, 6727-6729 An Ab initio Study of the Pt Bond Rotation in Phosphoryl- and Thiophosphoryl-Stabilized Carbanions: Five- and Six-Membered Heterocycles. <i>Journal of Organic Chemistry</i> , 1996, 61, 8551-8563 Chemistry of Trichlorosilyl Enolates. 1. New Reagents for Catalytic, Asymmetric Aldol Additions. <i>Journal of the American Chemical Society</i> , 1996, 118, 7404-7405 Ligand-mediated addition of organometallic reagents to azomethine functions. <i>Chemical</i>	4.2	34 146
126 125 124	trans-2-(1-Methyl-1-phenylethyl)cyclohexanol as a New Auxiliary. <i>Journal of Organic Chemistry</i> , 1996, 61, 6727-6729 An Ab initio Study of the Pt Bond Rotation in Phosphoryl- and Thiophosphoryl-Stabilized Carbanions: Five- and Six-Membered Heterocycles. <i>Journal of Organic Chemistry</i> , 1996, 61, 8551-8563 Chemistry of Trichlorosilyl Enolates. 1. New Reagents for Catalytic, Asymmetric Aldol Additions. <i>Journal of the American Chemical Society</i> , 1996, 118, 7404-7405 Ligand-mediated addition of organometallic reagents to azomethine functions. <i>Chemical Communications</i> , 1996, 999	4.2 16.4 5.8	34 146 124
126 125 124	trans-2-(1-Methyl-1-phenylethyl)cyclohexanol as a New Auxiliary. <i>Journal of Organic Chemistry</i> , 1996, 61, 6727-6729 An Ab initio Study of the Pt Bond Rotation in Phosphoryl- and Thiophosphoryl-Stabilized Carbanions: Five- and Six-Membered Heterocycles. <i>Journal of Organic Chemistry</i> , 1996, 61, 8551-8563 Chemistry of Trichlorosilyl Enolates. 1. New Reagents for Catalytic, Asymmetric Aldol Additions. <i>Journal of the American Chemical Society</i> , 1996, 118, 7404-7405 Ligand-mediated addition of organometallic reagents to azomethine functions. <i>Chemical Communications</i> , 1996, 999 Tandem [4+2]/[3+2] Cycloadditions of Nitroalkenes. <i>Chemical Reviews</i> , 1996, 96, 137-166 Tandem inter [4+2]/intra [3+2] cycloadditions. 8. Cycloadditions with unactivated dipolarophiles.	4.2 16.4 5.8 68.1	34 146 124 600
126 125 124 123	trans-2-(1-Methyl-1-phenylethyl)cyclohexanol as a New Auxiliary. <i>Journal of Organic Chemistry</i> , 1996, 61, 6727-6729 An Ab initio Study of the Pt Bond Rotation in Phosphoryl- and Thiophosphoryl-Stabilized Carbanions: Five- and Six-Membered Heterocycles. <i>Journal of Organic Chemistry</i> , 1996, 61, 8551-8563 Chemistry of Trichlorosilyl Enolates. 1. New Reagents for Catalytic, Asymmetric Aldol Additions. <i>Journal of the American Chemical Society</i> , 1996, 118, 7404-7405 Ligand-mediated addition of organometallic reagents to azomethine functions. <i>Chemical Communications</i> , 1996, 999 Tandem [4+2]/[3+2] Cycloadditions of Nitroalkenes. <i>Chemical Reviews</i> , 1996, 96, 137-166 Tandem inter [4+2]/intra [3+2] cycloadditions. 8. Cycloadditions with unactivated dipolarophiles. <i>Tetrahedron</i> , 1996, 52, 11579-11600 Ber die Struktur eines lithiierten Phosphanoxids in LBung und in festem Zustand. <i>Angewandte</i>	4.2 16.4 5.8 68.1	34 146 124 600

118	Asymmetric [2,3]-Wittig rearrangements with chiral, phosphorus anion-stabilizing groups. <i>Tetrahedron Letters</i> , 1995 , 36, 6631-6634	2	29
117	Catalytic enantioselective cyclopropanation with bis(halomethyl)zinc reagents. I. Optimization of reaction protocol. <i>Tetrahedron Letters</i> , 1995 , 36, 2215-2218	2	57
116	Catalytic enantioselective cyclopropanation with bis(halomethyl)zinc reagents. II. The effect of promoter structure on selectivity. <i>Tetrahedron Letters</i> , 1995 , 36, 2219-2222	2	64
115	Nitroalkene Inter [4 + 2]/Intra [3 + 2] Tandem Cycloadditions. 7. Application of (R)-(-)-2,2-Diphenylcyclopentanol as the Chiral Auxiliary. <i>Journal of Organic Chemistry</i> , 1995 , 60, 3205-33	2210 ²	44
114	Catalytic Epoxidation of Alkenes with Oxone. <i>Journal of Organic Chemistry</i> , 1995 , 60, 1391-1407	4.2	166
113	Tandem Inter [4 + 2]/Intra [3 + 2] Cycloadditions. 6. The Bridged Mode. <i>Journal of the American Chemical Society</i> , 1995 , 117, 2100-2101	16.4	36
112	Alkylations of Chiral, Phosphoryl- and Thiophosphoryl-Stabilized Carbanions. <i>Journal of the American Chemical Society</i> , 1995 , 117, 11879-11897	16.4	36
111	An ab Initio Study of the P-C Bond Rotation in Phosphorus-Stabilized Carbanions: The Phosphoryl versus Thiophosphoryl Group. <i>Journal of Organic Chemistry</i> , 1995 , 60, 5867-5877	4.2	39
110	A General Strategy for the Synthesis of Cis-Substituted Pyrrolizidine Bases. The Synthesis of (-)-Rosmarinecine. <i>Journal of Organic Chemistry</i> , 1995 , 60, 3574-3575	4.2	31
109	Asymmetric Michael Addition Reaction of Phosphorus-Stabilized Allyl Anions with Cyclic Enones. Journal of Organic Chemistry, 1995 , 60, 7535-7547	4.2	41
108	Palladium-Promoted Intramolecular Addition of an Aryl Iodide to a Nitroalkene. <i>Journal of Organic Chemistry</i> , 1995 , 60, 1013-1019	4.2	34
107	Asymmetric Nitroalkene [4 + 2] Cycloadditions: Enantioselective Synthesis of 3-Substituted and 3,4-Disubstituted Pyrrolidines. <i>Journal of Organic Chemistry</i> , 1995 , 60, 3221-3235	4.2	64
106	Preparation of Chiral Bisoxazolines: Observations on the Effect of Substituents. <i>Journal of Organic Chemistry</i> , 1995 , 60, 4884-4892	4.2	137
105	Enantioselective synthesis of alkylidene cyclohexanes by an asymmetric olefination/cross-coupling sequence. <i>Heteroatom Chemistry</i> , 1995 , 6, 133-144	1.2	8
104	Triarylcarbenium ions as catalysts in the Mukaiyama Aldol addition: A mechanistic investigation. <i>Tetrahedron Letters</i> , 1994 , 35, 4327-4330	2	66
103	The Tandem Cycloaddition Chemistry of Nitroalkenes. A Novel Synthesis of (-)-Hastanecine. <i>Journal of Organic Chemistry</i> , 1994 , 59, 5672-5680	4.2	62
102	Asymmetric Addition of Organolithium Reagents to Imines. <i>Journal of the American Chemical Society</i> , 1994 , 116, 8797-8798	16.4	157
101	The Nazarov Cyclization 1994 , 1-158		46

100	Stereochemical Studies on the Addition of Allylsilanes to Aldehydes. The SE' Component. <i>Journal of Organic Chemistry</i> , 1994 , 59, 5130-5132	4.2	51
99	Asymmetric Carboalkoxyalkylidenation with a Chiral Horner-Wadsworth-Emmons Reagent. <i>Journal of Organic Chemistry</i> , 1994 , 59, 6887-6889	4.2	56
98	Asymmetric Allylation of Aldehydes with Chiral Lewis Bases. <i>Journal of Organic Chemistry</i> , 1994 , 59, 616	1 4.6 16.	3205
97	Nitroalkene [4 + 2] Cycloadditions with 2-(Acyloxy)vinyl Ethers. Stereoselective Synthesis of 3-Hydroxy-4-substituted-pyrrolidines. <i>Journal of Organic Chemistry</i> , 1994 , 59, 4576-4595	4.2	36
96	Structure and Dynamics of Phosphorus(V)-Stabilized Carbanions: A Comparison of Theoretical, Crystallographic, and Solution Structures. <i>Journal of the American Chemical Society</i> , 1994 , 116, 2437-244	1 7 6.4	45
95	Investigations on Transition-State Geometry in the Lewis Acid- (Mukaiyama) and Fluoride-Promoted Aldol Reactions. <i>Journal of Organic Chemistry</i> , 1994 , 59, 707-709	4.2	50
94	Chemistry of Enoxysilacyclobutanes: Highly Selective Uncatalyzed Aldol Additions. <i>Journal of the American Chemical Society</i> , 1994 , 116, 7026-7043	16.4	126
93	Alkylation of Chiral, Phosphorus-Stabilized Carbanions: Substituent Effects on the Alkylation Selectivity. <i>Journal of Organic Chemistry</i> , 1994 , 59, 2922-2924	4.2	33
92	Chemistry of Enoxysilacyclobutanes. 3. Uncatalyzed, Syn-Selective, Asymmetric Aldol Additions. Journal of Organic Chemistry, 1994 , 59, 5136-5138	4.2	23
91	Stereochemical Studies on the Addition of Allylstannanes to Aldehydes. The SE' Component. <i>Journal of Organic Chemistry</i> , 1994 , 59, 5133-5135	4.2	29
90	A general method for the preparation of 2,2-disubstituted 1-nitroalkenes. <i>Journal of Organic Chemistry</i> , 1993 , 58, 3850-3856	4.2	58
89	Spectroscopic studies on the structure and conformation of Lewis acid-aldehyde complexes. Journal of the American Chemical Society, 1993, 115, 3133-3139	16.4	75
88	Tandem inter [4+2]/intra [3+2]nitroalkene cycloadditions. 5. Origin of the Lewis acid dependent reversal of stereoselectivity. <i>Journal of Organic Chemistry</i> , 1993 , 58, 1859-1874	4.2	51
87	Solution- and solid-state structure and dynamics of thiophosphonamide anions: electronic tuning of rotational barriers. <i>Journal of the American Chemical Society</i> , 1993 , 115, 3826-3827	16.4	25
86	A new, general, and stereoselective method for the synthesis of trisubstituted alkenes. <i>Journal of the American Chemical Society</i> , 1993 , 115, 10386-10387	16.4	58
85	Tandem inter [4+2]/intra [3+2] nitroalkene cycloadditions. 4. Cycloadditions with (E)- and (Z)-1-propenyl ethers. <i>Journal of Organic Chemistry</i> , 1993 , 58, 1853-1858	4.2	31
84	The chemistry of enoxysilacyclobutanes: highly selective, uncatalyzed aldol additions. <i>Journal of Organic Chemistry</i> , 1993 , 58, 988-990	4.2	45
83	Carbanion hybridization of thiophosphonamide-stabilized anions: remarkable steric and solvation effects. <i>Journal of the American Chemical Society</i> , 1993 , 115, 12195-12196	16.4	10

82	Organocerium additions to hydrazones: effects of reagent stoichiometry on efficiency and selectivity. <i>Journal of Organic Chemistry</i> , 1993 , 58, 569-578	4.2	61
81	Organocerium Additions to Chiral ⊞ialkoxy Hydrazones: Asymmetric Synthesis ofN-Protected ⊞mino Acetals and ⊞mino Aldehydes. <i>Synlett</i> , 1993 , 1993, 359-361	2.2	39
80	Nitroalkene [4+2] cycloaddition as a general and stereoselective route to the synthesis of 3,3- and 3,4-disubstituted pyrrolidines. <i>Journal of Organic Chemistry</i> , 1993 , 58, 3857-3868	4.2	35
79	A Diastereoselective Synthesis of (dl)-1,3-Diphenyl-1,3-propanediamines. <i>Synthesis</i> , 1992 , 1992, 229-234	12.9	19
78	Chiral Amino Alcohol Modified Halomethylzinc Reagents. <i>Synlett</i> , 1992 , 1992, 229-230	2.2	26
77	Electrophilic activation of the Horner-Wadsworth-Emmons-Wittig reaction: highly selective synthesis of dissymmetric olefins. <i>Journal of the American Chemical Society</i> , 1992 , 114, 10674-10676	16.4	60
76	Solution- and solid-state structural studies of (halomethyl)zinc reagents. <i>Journal of the American Chemical Society</i> , 1992 , 114, 2592-2602	16.4	68
75	Inter- and intramolecular [4 + 2] cycloadditions of nitroalkenes with olefins. 2-Nitrostyrenes. Journal of Organic Chemistry, 1992 , 57, 4912-4924	4.2	71
74	Asymmetric electrophilic amination of chiral phosphorus-stabilized anions. <i>Tetrahedron</i> , 1992 , 48, 2191	-2208	68
73	A stereochemical study on the intramolecular hydrosilylation of 即nsaturated esters. <i>Tetrahedron Letters</i> , 1992 , 33, 5037-5040	2	21
72	Spectroscopic studies on the TiCl4-promoted reaction of allylsilanes with aldehydes and menones. <i>Tetrahedron</i> , 1992 , 48, 5565-5578	2.4	36
71	Investigations on transition state geometry of the aldol condensation in aqueous medium. <i>Tetrahedron Letters</i> , 1992 , 33, 7729-7732	2	15
70	On the generation and configurational stability of (2S,3S)-1,2,3-triphenylborirane. <i>Journal of the American Chemical Society</i> , 1991 , 113, 6675-6676	16.4	24
69	Studies on the mechanism and origin of stereoselective opening of chiral dioxane acetals. <i>Journal of the American Chemical Society</i> , 1991 , 113, 8089-8110	16.4	123
68	Configuration, conformation, and colligative properties of a phosphorus-stabilized anion. <i>Journal of the American Chemical Society</i> , 1991 , 113, 1468-1470	16.4	52
67	Synthesis of 日and 即ranched ethers from alcohols by reaction of acetals with grignard reagents: synthesis of isopropyl and isobutyl ethers of (1S*,2R*S*,4R*)-6-methylenebicyclo[2.2.2]octan-2-ol. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1991 , 2899-2906		2
66	Carbanion-accelerated Claisen rearrangements. 7. Phosphine oxide and phosphonate anion stabilizing groups. <i>Journal of Organic Chemistry</i> , 1991 , 56, 1003-1013	4.2	25
65	A comparison of (chloromethyl)- and (iodomethyl)zinc cyclopropanation reagents. <i>Journal of Organic Chemistry</i> , 1991 , 56, 6974-6981	4.2	194

64	Tandem inter [4+2]/intra [3+2] cycloadditions. 3. The stereochemical influence of the Lewis acid. <i>Journal of Organic Chemistry</i> , 1991 , 56, 6738-6739	4.2	31
63	Carbanion-accelerated Claisen rearrangements. 8. Phosphonamide anion-stabilizing groups. <i>Journal of Organic Chemistry</i> , 1991 , 56, 5063-5079	4.2	40
62	Investigations on transition-state geometry in the aldol condensation <i>Journal of the American Chemical Society</i> , 1991 , 113, 2177-2194	16.4	63
61	Solution and solid-state structure of the "Wittig-Furukawa" cyclopropanation reagent. <i>Journal of the American Chemical Society</i> , 1991 , 113, 723-725	16.4	59
60	Stereoselective opening of chiral dioxane acetals. Nucleophile dependence. <i>Journal of Organic Chemistry</i> , 1991 , 56, 6485-6487	4.2	34
59	On the stereoselectivity opening of achiral dioxane acetals. <i>Journal of Organic Chemistry</i> , 1991 , 56, 6458	B _z 6 ⋬ 67	39
58	Nazarov and Related Cationic Cyclizations 1991 , 751-784		53
57	Intramolecular [4+2]-cycloadditions of nitroalkenes with olefins. 2. <i>Tetrahedron</i> , 1990 , 46, 7373-7392	2.4	32
56	Tandem [4+2]/[3+2]-cycloadditions. 2. Asymmetric induction with a chiral vinyl ether. <i>Tetrahedron</i> , 1990 , 46, 4857-4876	2.4	47
55	Lithium/ammonia cleavage of the nitrogen-nitrogen bond in N-(methoxycarbonyl)- and N-acetylhydrazines. <i>Journal of Organic Chemistry</i> , 1990 , 55, 6219-6223	4.2	68
54	The solution and solid state structure of a phosphorus-stabilized carbanion. <i>Journal of the American Chemical Society</i> , 1990 , 112, 864-866	16.4	61
53	Synthesis, structure, and reactivity of an organogermanium Lewis acid. <i>Organometallics</i> , 1990 , 9, 3015-3	0,189	55
52	Stereoselective alkylations of chiral, phosphorus-stabilized benzylic carbanions. <i>Journal of Organic Chemistry</i> , 1990 , 55, 5926-5928	4.2	38
51	Tandem [4 + 2]/[3 + 2] cycloadditions: facile and stereoselective construction of polycyclic frameworks. <i>Journal of the American Chemical Society</i> , 1990 , 112, 311-315	16.4	43
50	The theoretical structures of neutral, anionic, and lithiated P-allylphosphonic diamide. <i>Journal of Organic Chemistry</i> , 1990 , 55, 1806-1813	4.2	31
49	Auxiliary-based, asymmetric SN2' reactions: a case of 1,7-relative stereogenesis. <i>Journal of Organic Chemistry</i> , 1990 , 55, 1984-1986	4.2	53
48	The vinylogous anomeric effect in 3-alkyl-2-chlorocyclohexanone oximes and oxime ethers. <i>Journal of the American Chemical Society</i> , 1990 , 112, 3466-3474	16.4	69
47	Silicon-directed Nazarov cyclizations. 8. Stereoelectronic control of torquoselectivity. <i>Journal of Organic Chemistry</i> , 1990 , 55, 5543-5545	4.2	69

46	Modified Proline Auxiliaries for Selective Addition of Organocerium Reagents to Hydrazones. <i>Synlett</i> , 1989 , 1989, 20-22	2.2	23
45	Stereochemical and spectroscopic studies on the reaction of allylstannanes with aldehydes. <i>Tetrahedron</i> , 1989 , 45, 1053-1065	2.4	97
44	Carbanion-accelerated Claisen rearrangements 5. Studies on stereocontrol with phosphorus-stabilized anions. <i>Tetrahedron Letters</i> , 1989 , 30, 2469-2472	2	22
43	Carbanion-accelerated Claisen rearrangements. 6. Preparative and stereochemical studies with sulfonyl-stabilized anions. <i>Journal of the American Chemical Society</i> , 1989 , 111, 8878-8891	16.4	25
42	Investigations on transition-state geometry in the aldol condensation. <i>Journal of the American Chemical Society</i> , 1989 , 111, 8032-8034	16.4	24
41	The origin of stereoselective opening of chiral dioxane and dioxolane acetals: solution structure of their Lewis acid complexes. <i>Journal of the American Chemical Society</i> , 1989 , 111, 9258-9260	16.4	45
40	Mechanistic and stereochemical divergence in the allylsilane-acetal addition reaction. <i>Journal of the American Chemical Society</i> , 1989 , 111, 3475-3476	16.4	49
39	The stereochemical course of migration from phosphorus to nitrogen in the photo-Curtius rearrangement of phosphinic azides (Harger reaction). <i>Journal of Organic Chemistry</i> , 1989 , 54, 5-6	4.2	14
38	Studies on the Mechanism of Allylmetal-Acetal Additions 1989, 247-263		1
37	Silicon-Directed Nazarov Cyclizations. Part V. Substituent and heteroatom effects on the reaction. Helvetica Chimica Acta, 1988 , 71, 168-194	2	71
36	Silicon-Directed Nazarov Cyclizations. Part VI. The anomalous cyclization of vinyl dienyl ketones. Helvetica Chimica Acta, 1988 , 71, 195-208	2	36
35	Silicon-directed nazarov cyclizations VII. <i>Tetrahedron</i> , 1988 , 44, 4043-4060	2.4	46
34	.alphaNitro keto hydrazone and keto imine dianions. Synthetic equivalents for the nitroalkene d3 synthon. <i>Journal of Organic Chemistry</i> , 1988 , 53, 1251-1263	4.2	13
33	Stereoselective alkylation of chiral .alphanitro keto imine dianions. Observations on the role of amide bases. <i>Journal of the American Chemical Society</i> , 1988 , 110, 4432-4434	16.4	10
32	On the Lewis-acid-induced addition of allylstannanes to aldehydes: a spectroscopic investigation. Journal of the American Chemical Society, 1988 , 110, 984-986	16.4	74
31	Organocerium additions to SAMP-hydrazones: general synthesis of chiral amines. <i>Journal of the American Chemical Society</i> , 1987 , 109, 2224-2225	16.4	103
30	Diphenylmethylsilyl ether (DPMS): a protecting group for alcohols. <i>Journal of Organic Chemistry</i> , 1987 , 52, 165-168	4.2	35
29	Studies on the addition of allyl oxides to sulfonylallenes. Preparation of highly substituted allyl vinyl ethers for carbanionic Claisen rearrangements. <i>Journal of Organic Chemistry</i> , 1987 , 52, 4031-4042	4.2	45

28	Carbanion-accelerated Claisen rearrangements. 4. Asymmetric induction via 1,3,2-oxazaphosphorinanes. <i>Journal of Organic Chemistry</i> , 1987 , 52, 5742-5745	4.2	32
27	SnCl4(4-tert-BuC6H4CHO)2. X-ray crystal structure, solution NMR, and implications for reactions at complexed carbonyls. <i>Journal of the American Chemical Society</i> , 1987 , 109, 2512-2514	16.4	74
26	Intramolecular [4 + 2]-cycloadditions of vinylnitrosonium cations with olefins. <i>Journal of Organic Chemistry</i> , 1987 , 52, 877-887	4.2	9
25	An AB initio study of the [1,2] proton transfer from phosphine oxide to phosphinic acid. <i>Chemical Physics Letters</i> , 1987 , 136, 17-21	2.5	25
24	Intermolecular [4 + 2]-Cycloadditions of Nitroalkenes with Cyclic Olefins. Transformations of Cyclic Nitronates. <i>Helvetica Chimica Acta</i> , 1986 , 69, 1971-1989	2	41
23	Silicon-directed nazarov cyclizations-IV. <i>Tetrahedron</i> , 1986 , 42, 2821-2829	2.4	42
22	The stereostructures of [1,1?-bicyclohexyl]-2,2?-diones: A reassignment. <i>Tetrahedron Letters</i> , 1986 , 27, 3693-3696	2	12
21	Intramolecular [4 + 2] cycloadditions of nitroalkenes with olefins. <i>Journal of the American Chemical Society</i> , 1986 , 108, 1306-1307	16.4	46
20	Intramolecular [4 + 2] cycloadditions of (Z)alpha.,.betaunsaturated aldehydes with vinyl sulfides and ketene dithioacetals. <i>Journal of the American Chemical Society</i> , 1986 , 108, 8277-8279	16.4	31
19	A general method for the preparation of .gammasubstituted cyclohexenals and cycloheptenals. Journal of Organic Chemistry, 1985 , 50, 4037-4045	4.2	32
18	A vinylsilane route to trans-7a-methylhydrind-4-en-1,6-dione. <i>Tetrahedron Letters</i> , 1984 , 25, 1231-1234	2	22
17	Carbanion-accelerated Claisen rearrangements 3. Vicinal quaternary centers. <i>Tetrahedron Letters</i> , 1984 , 25, 1543-1546	2	25
16	Intramolecular [4 + 2] cycloadditions of nitrosoalkenes with olefins. <i>Journal of Organic Chemistry</i> , 1984 , 49, 4741-4743	4.2	45
15	alphaChloro ketoximes as precursors of nitrosoalkenes: preparation, stereochemistry and conformation. <i>Journal of Organic Chemistry</i> , 1984 , 49, 798-806	4.2	64
14	Stereochemistry of allylmetal-aldehyde condensations. 2. Allylstannanes. <i>Journal of the American Chemical Society</i> , 1984 , 106, 7970-7971	16.4	99
13	On the stereochemistry of allylmetal-aldehyde condensations. Preliminary communication. <i>Helvetica Chimica Acta</i> , 1983 , 66, 1655-1660	2	126
12	Silicon-Directed Nazarov Reactions II. Preparation and Cyclization of 断ilyl-substituted Divinyl Ketones. <i>Helvetica Chimica Acta</i> , 1983 , 66, 2377-2396	2	93
11	Silicon-Directed Nazarov Reactions III. Stereochemical and Mechanistic Considerations. <i>Helvetica Chimica Acta</i> , 1983 , 66, 2397-2411	2	53

10	Carbanion-accelerated Claisen rearrangements. 2. Studies on internal asymmetric induction. Journal of Organic Chemistry, 1983 , 48, 3369-3370	4.2	33
9	Facile oxetane formation in a rigid bicyclo[2.2.2]octane system. <i>Journal of Organic Chemistry</i> , 1981 , 46, 3144-3147	4.2	24
8	Organosilicon Compounds in Cross-Coupling Reactions163-216		46
7	Catalytic Enantioselective Aldol Additions with Chiral Lewis Bases229-326		10
6	Allylation of Carbonyls: Methodology and Stereochemistry299-401		65
5	Enantioselective [2+1] Cycloaddition: Cyclopropanation with Zinc Carbenoids85-150		1
4	(R)-(I-2,2-Diphenylcyclopentanol33-33		
3	Stereospecific Reduction of Propargyl Alcohols: (E)-3-Trimethylsilyl-2-Propen-1-ol182-182		
2	(R)-N,N'-Dimethyl-1,1'-Binaphthyldiamine1-18		
1	Preparation of a Diisopropylselenophosphoramide Catalyst and its Use in Enantioselective Sulfenoeth	nerifical	tion1-18