## Hongbing Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2921605/publications.pdf Version: 2024-02-01



HONGRING YU

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Water Research, 2012, 46, 5777-5787.                              | 11.3 | 383       |
| 2  | Catalysis Kinetics and Porous Analysis of Rolling Activated Carbon-PTFE Air-Cathode in Microbial Fuel<br>Cells. Environmental Science & Technology, 2012, 46, 13009-13015.                                        | 10.0 | 204       |
| 3  | Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as<br>catalyst. Bioresource Technology, 2014, 151, 355-360.                                                         | 9.6  | 159       |
| 4  | Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid.<br>Bioresource Technology, 2011, 102, 4179-4183.                                                                    | 9.6  | 158       |
| 5  | Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid. Bioresource Technology, 2013, 130, 110-116.                                                      | 9.6  | 158       |
| 6  | Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells. Bioresource Technology, 2012, 121, 450-453.                                                | 9.6  | 146       |
| 7  | The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue).<br>Bioresource Technology, 2010, 101, 3236-3241.                                                                   | 9.6  | 143       |
| 8  | Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates. Journal of Hazardous Materials, 2021, 420, 126655.                            | 12.4 | 124       |
| 9  | Facile preparation of MnO <sub>2</sub> doped Fe <sub>2</sub> O <sub>3</sub> hollow nanofibers for<br>low temperature SCR of NO with NH <sub>3</sub> . Journal of Materials Chemistry A, 2014, 2,<br>20486-20493.  | 10.3 | 118       |
| 10 | Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural. Bioresource Technology, 2017, 224, 656-661.                                          | 9.6  | 116       |
| 11 | Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte. Journal of Power Sources, 2014, 271, 278-284.                          | 7.8  | 115       |
| 12 | Highly selective conversion of glucose into furfural over modified zeolites. Chemical Engineering<br>Journal, 2017, 307, 868-876.                                                                                 | 12.7 | 102       |
| 13 | Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells. Bioresource Technology, 2013, 144, 632-636.                                   | 9.6  | 91        |
| 14 | Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide<br>to formate by adding polytetrafluoroethylene into catalyst layer. Journal of Power Sources, 2015, 279,<br>1-5. | 7.8  | 88        |
| 15 | Enhanced performance of activated carbon–polytetrafluoroethylene air-cathode by avoidance of sintering on catalyst layer in microbial fuelÂcells. Journal of Power Sources, 2013, 232, 132-138.                   | 7.8  | 87        |
| 16 | Lack of anodic capacitance causes power overshoot in microbial fuel cells. Bioresource Technology,<br>2013, 138, 353-358.                                                                                         | 9.6  | 83        |
| 17 | Enhanced anode performance of microbial fuel cells by adding nanosemiconductor goethite. Journal of Power Sources, 2013, 223, 94-99.                                                                              | 7.8  | 73        |
| 18 | Enhanced infrared radiation properties of CoFe2O4 by single Ce3+-doping with energy-efficient preparation. Ceramics International, 2014, 40, 5905-5911.                                                           | 4.8  | 73        |

Нолсвілс Үи

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Simulated-sunlight-activated photocatalysis of Methylene Blue using cerium-doped SiO2/TiO2<br>nanostructured fibers. Journal of Environmental Sciences, 2012, 24, 1867-1875.                                                              | 6.1  | 70        |
| 20 | Solid acids as catalysts for the conversion of d-xylose, xylan and lignocellulosics into furfural in ionic liquid. Bioresource Technology, 2013, 136, 515-521.                                                                            | 9.6  | 69        |
| 21 | Fabrication of a novel tin gas diffusion electrode for electrochemical reduction of carbon dioxide to formic acid. RSC Advances, 2014, 4, 59970-59976.                                                                                    | 3.6  | 65        |
| 22 | Highly efficient removal of NO with ordered mesoporous manganese oxide at low temperature. RSC Advances, 2015, 5, 29353-29361.                                                                                                            | 3.6  | 62        |
| 23 | Microwave hydrothermal synthesis of Ag2CrO4 photocatalyst for fast degradation of PCP-Na under visible light irradiation. Catalysis Communications, 2012, 26, 63-67.                                                                      | 3.3  | 59        |
| 24 | Tungsten oxide quantum dots deposited onto ultrathin CdIn2S4 nanosheets for efficient S-scheme photocatalytic CO2 reduction via cascade charge transfer. Chemical Engineering Journal, 2022, 428, 131218.                                 | 12.7 | 58        |
| 25 | Low-temperature selective catalytic reduction of NO with NH3 over ordered mesoporous<br>MnxCo3â^'xO4 catalyst. Catalysis Communications, 2015, 62, 107-111.                                                                               | 3.3  | 57        |
| 26 | Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresource Technology, 2013, 144, 689-692.                                                                                                              | 9.6  | 56        |
| 27 | Carbonâ€supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2013, 88, 774-778.                                                  | 3.2  | 53        |
| 28 | Internal electric field engineering step-scheme–based heterojunction using lead-free Cs3Bi2Br9<br>perovskite–modified In4SnS8 for selective photocatalytic CO2 reduction to CO. Applied Catalysis B:<br>Environmental, 2022, 313, 121426. | 20.2 | 53        |
| 29 | NH3-SCR performance improvement of mesoporous Sn modified Cr-MnOx catalysts at low temperatures. Catalysis Today, 2015, 258, 103-111.                                                                                                     | 4.4  | 51        |
| 30 | In-situ electrochemical flue gas desulfurization via carbon black-based gas diffusion electrodes:<br>Performance, kinetics and mechanism. Chemical Engineering Journal, 2017, 307, 553-561.                                               | 12.7 | 51        |
| 31 | Enhanced electrochemical reduction of carbon dioxide to formic acid using a two-layer gas diffusion electrode in a microbial electrolysis cell. RSC Advances, 2015, 5, 10346-10351.                                                       | 3.6  | 44        |
| 32 | Conversion of Xylan and Xylose into Furfural in Biorenewable Deep Eutectic Solvent with Trivalent<br>Metal Chloride Added. BioResources, 2013, 8, .                                                                                       | 1.0  | 43        |
| 33 | Fabrication of Electrochemically Reduced Graphene Oxide Modified Gas Diffusion Electrode for<br>In-situ Electrochemical Advanced Oxidation Process under Mild Conditions. Electrochimica Acta,<br>2016, 222, 1501-1509.                   | 5.2  | 43        |
| 34 | Global characteristics and trends of research on ceramic membranes from 1998 to 2016: Based on<br>bibliometric analysis combined with information visualization analysis. Ceramics International, 2018,<br>44, 6926-6934.                 | 4.8  | 39        |
| 35 | Degradation of Norfloxacin in saline water by synergistic effect of anode and cathode in a novel photo-electrochemical system. Journal of Cleaner Production, 2020, 242, 118548.                                                          | 9.3  | 39        |
| 36 | Synthesis of 1D Bi12O17ClxBr2â^'x nanotube solid solutions with rich oxygen vacancies for highly<br>efficient removal of organic pollutants under visible light. Applied Catalysis B: Environmental, 2020,<br>269, 118774.                | 20.2 | 39        |

Нолсвілс Үи

| #  | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Promoted photocatalytic degradation and detoxication performance for norfloxacin on Z-scheme phosphate-doped BiVO4/graphene quantum dots/P-doped g-C3N4. Separation and Purification Technology, 2021, 274, 118692.                                                            | 7.9  | 38        |
| 38 | Effects of graphite, graphene, and graphene oxide on the anaerobic co-digestion of sewage sludge and<br>food waste: Attention to methane production and the fate of antibiotic resistance genes. Bioresource<br>Technology, 2021, 339, 125585.                                 | 9.6  | 36        |
| 39 | Direct synthesis of bismuth nanosheets on a gas diffusion layer as a high-performance cathode for a coupled electrochemical system capable of electroreduction of CO2 to formate with simultaneous degradation of organic pollutants. Electrochimica Acta, 2019, 319, 138-147. | 5.2  | 35        |
| 40 | Energy-saving removal of methyl orange in high salinity wastewater by electrochemical oxidation via<br>a novel Ti/SnO2-Sb anode—Air diffusion cathode system. Catalysis Today, 2015, 258, 156-161.                                                                             | 4.4  | 33        |
| 41 | Fast degradation of methylene blue with electrospun hierarchical α-Fe2O3 nanostructured fibers.<br>Journal of Sol-Gel Science and Technology, 2011, 58, 716-723.                                                                                                               | 2.4  | 32        |
| 42 | Enhanced infrared radiation properties of CoFe2O4 by doping with Y3+ via sol–gel auto-combustion.<br>Ceramics International, 2014, 40, 12883-12889.                                                                                                                            | 4.8  | 32        |
| 43 | Radical and non-radical cooperative degradation in metal-free electro-Fenton based on nitrogen self-doped biochar. Journal of Hazardous Materials, 2022, 435, 129063.                                                                                                          | 12.4 | 32        |
| 44 | Coral-like WO3/BiVO4 photoanode constructed via morphology and facet engineering for antibiotic wastewater detoxification and hydrogen recovery. Chemical Engineering Journal, 2022, 428, 131817.                                                                              | 12.7 | 31        |
| 45 | Norfloxacin degradation by a green carbon black-Ti/SnO2-Sb electrochemical system in saline water.<br>Catalysis Today, 2019, 327, 308-314.                                                                                                                                     | 4.4  | 30        |
| 46 | Electrodeposition of tin on Nafion-bonded carbon black as an active catalyst layer for efficient electroreduction of CO2 to formic acid. Scientific Reports, 2017, 7, 13711.                                                                                                   | 3.3  | 29        |
| 47 | The innovative application of organosolv lignin for nanomaterial modification to boost its heavy<br>metal detoxification performance in the aquatic environment. Chemical Engineering Journal, 2020,<br>382, 122789.                                                           | 12.7 | 29        |
| 48 | Experimental and Kinetic Study on the Production of Furfural and HMF from Glucose. Catalysts, 2021, 11, 11.                                                                                                                                                                    | 3.5  | 29        |
| 49 | Evaluation of cleaner production technology integration for the Chinese herbal medicine industry using carbon flow analysis. Journal of Cleaner Production, 2017, 163, 49-57.                                                                                                  | 9.3  | 23        |
| 50 | Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. Molecular Catalysis, 2021, 515, 111899.                                                                                              | 2.0  | 23        |
| 51 | Enhanced electroreduction of CO2 and simultaneous degradation of organic pollutants using a<br>Sn-based carbon nanotubes/carbon black hybrid gas diffusion cathode. Journal of CO2 Utilization,<br>2018, 26, 425-433.                                                          | 6.8  | 22        |
| 52 | Carbon Dioxide Captured from Flue Gas by Modified Ca-based Sorbents in Fixed-bed Reactor at High<br>Temperature. Chinese Journal of Chemical Engineering, 2013, 21, 199-204.                                                                                                   | 3.5  | 18        |
| 53 | Direct and potential risk assessment of exposure to volatile organic compounds for primary receptor associated with solvent consumption. Environmental Pollution, 2018, 233, 501-509.                                                                                          | 7.5  | 18        |
| 54 | LiCoO2Hollow Nanofibers by Coâ€Electrospinning Solâ€Gel Precursor. Journal of Dispersion Science and Technology, 2008, 29, 702-705.                                                                                                                                            | 2.4  | 17        |

Hongbing Yu

| #  | Article                                                                                                                                                                                                                                          | lF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Electro-UV/H2O2 system with RGO-modified air diffusion cathode for simulative antibiotic-manufacture effluent treatment. Chemical Engineering Journal, 2020, 390, 124650.                                                                        | 12.7 | 17        |
| 56 | The exploration of Ti/SnO2-Sb anode/air diffusion cathode/UV dual photoelectric catalytic coupling<br>system for the biological harmless treatment of real antibiotic industrial wastewater. Chemical<br>Engineering Journal, 2021, 412, 128581. | 12.7 | 17        |
| 57 | A novel strategy to achieve simultaneous efficient formate production and p-nitrophenol removal in a co-electrolysis system of CO2 and p-nitrophenol. Journal of CO2 Utilization, 2021, 47, 101497.                                              | 6.8  | 16        |
| 58 | Sn nanoparticles deposited onto a gas diffusion layer via impregnation-electroreduction for enhanced CO2 electroreduction to formate. Electrochimica Acta, 2021, 369, 137662.                                                                    | 5.2  | 15        |
| 59 | Degradation of desphenyl chloridazon in a novel synergetic electrocatalytic system with<br>Ni–Sb–SnO2/Ti anode and PEDOT/PSS-CNTs modified air diffusion cathode. Journal of Cleaner<br>Production, 2021, 300, 126961.                           | 9.3  | 15        |
| 60 | PEDOT: PSS-MWCNTs modified carbon black-based gas diffusion electrodes for improved performance of in-situ electrocatalytic flue gas desulfurization. Journal of Cleaner Production, 2018, 200, 1087-1099.                                       | 9.3  | 14        |
| 61 | La0.75Sr0.25Cr0.5Mn0.5O3-Î^Ce0.8Sm0.2O1.9 as composite electrodes in symmetric solid electrolyte cells for electrochemical removal of nitric oxide. Applied Catalysis B: Environmental, 2020, 264, 118533.                                       | 20.2 | 13        |
| 62 | Improved Norfloxacin degradation by urea precipitation Ti/SnO2–Sb anode under photo-electro<br>catalysis and kinetics investigation by BP-neural-network-physical modeling. Journal of Cleaner<br>Production, 2021, 280, 124412.                 | 9.3  | 12        |
| 63 | Synergy of developed micropores and electronic structure defects in carbon-doped boron nitride for CO2 capture. Science of the Total Environment, 2022, 811, 151384.                                                                             | 8.0  | 12        |
| 64 | Co-Electrospun BaTiO3 Hollow Fibers Combined with Sol-Gel Method. Journal of Dispersion Science and Technology, 2008, 29, 1345-1348.                                                                                                             | 2.4  | 11        |
| 65 | Sol-gel preparation of mesoporous cerium-doped FeTi nanocatalysts and its SCR activity of NOx with NH3 at low temperature. Journal of Sol-Gel Science and Technology, 2015, 73, 443-451.                                                         | 2.4  | 11        |
| 66 | In-situ electrochemical NO x removal process for the lean-burn engine exhaust based on carbon black<br>gas diffusion electrode. Journal of Cleaner Production, 2017, 151, 465-474.                                                               | 9.3  | 11        |
| 67 | Exposure profile of volatile organic compounds receptor associated with paints consumption.<br>Science of the Total Environment, 2017, 603-604, 57-65.                                                                                           | 8.0  | 11        |
| 68 | A Mini Review: Electrospun Hierarchical Nanofibers. Journal of Dispersion Science and Technology, 2010, 31, 760-769.                                                                                                                             | 2.4  | 10        |
| 69 | Facile fabrication of cerium niobate nano-crystalline fibers by electrospinning technology. Journal of<br>Sol-Gel Science and Technology, 2011, 58, 394-399.                                                                                     | 2.4  | 8         |
| 70 | Electrochemical reduction of NO by solid electrolyte cells with La0.8Sr0.2MnO3-Ce0.8Sm0.2O1.9 composite cathodes. Chemical Engineering Journal, 2019, 378, 122188.                                                                               | 12.7 | 8         |
| 71 | Effect of sintering temperature on NO decomposition by solid electrolyte cells with LSM-SDC composite cathodes. Journal of Alloys and Compounds, 2019, 777, 915-925.                                                                             | 5.5  | 8         |
| 72 | Electrochemical removal of NOx by La0.8Sr0.2Mn1â^'xNixO3 electrodes in solid electrolyte cells: Role of Ni substitution. Journal of Hazardous Materials, 2021, 420, 126640.                                                                      | 12.4 | 8         |

Hongbing Yu

| #  | Article                                                                                                                                                                                                                                | IF         | CITATIONS  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 73 | Performance and Mechanism of In Situ Electro-Catalytic Flue Gas Desulfurization via Carbon<br>Black-Based Gas Diffusion Electrodes Doped with MWCNTs. Electrocatalysis, 2017, 8, 103-114.                                              | 3.0        | 5          |
| 74 | Graphene-doped carbon black gas diffusion electrode for nonmetallic electrochemical advanced oxidation process under mild conditions. Environmental Technology (United Kingdom), 2018, 39, 2959-2966.                                  | 2.2        | 5          |
| 75 | In-situ electrochemical DeNOx under mild conditions depending on perovskite-modified gas diffusion electrode. Chemical Engineering Journal, 2019, 358, 666-678.                                                                        | 12.7       | 5          |
| 76 | Oxidative desulphurization of model fuel by in situ produced hydrogen peroxide on palladium/active carbon. Canadian Journal of Chemical Engineering, 2017, 95, 136-141.                                                                | 1.7        | 4          |
| 77 | CANON process for nitrogen removal from effluents of municipal sewage treatment plants.<br>Transactions of Tianjin University, 2013, 19, 255-259.                                                                                      | 6.4        | 3          |
| 78 | Study of SARS-CoV-2 transmission in urban environment by questionnaire and modeling for sustainable risk control. Journal of Hazardous Materials, 2021, 420, 126621.                                                                   | 12.4       | 3          |
| 79 | Investigation and improvement of a novel double-working-electrode electrochemical system for organic matter treatment from high-salinity wastewater. Environmental Technology (United) Tj ETQq1 1 0.78431                              | .4 zgBT /O | vezlock 10 |
| 80 | Construction of cleaner production management system in China: mode innovation of cleaner production. Environmental Science and Pollution Research, 2022, 29, 17626-17644.                                                             | 5.3        | 2          |
| 81 | Removal of PCP-Na from aqueous systems using monodispersed pompon-like magnetic nanoparticles as adsorbents. Water Science and Technology, 2013, 68, 2704-2711.                                                                        | 2.5        | 0          |
| 82 | New insights of anaerobic performance, antibiotic resistance gene removal, microbial community<br>structure: applying graphite-based materials in wet anaerobic digestion. Environmental Technology<br>(United Kingdom), 2022, , 1-14. | 2.2        | 0          |