
Chuck T Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2921576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diffusion of docosahexaenoic and eicosapentaenoic acids through the blood–brain barrier: An in situ cerebral perfusion study. Neurochemistry International, 2009, 55, 476-482.	3.8	180
2	Regulation of brain polyunsaturated fatty acid uptake and turnover. Prostaglandins Leukotrienes and Essential Fatty Acids, 2008, 79, 85-91.	2.2	135
3	Rapid β-oxidation of eicosapentaenoic acid in mouse brain: An in situ study. Prostaglandins Leukotrienes and Essential Fatty Acids, 2009, 80, 157-163.	2.2	132
4	Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain. Scientific Reports, 2015, 5, 15791.	3.3	95
5	The low levels of eicosapentaenoic acid in rat brain phospholipids are maintained via multiple redundant mechanisms. Journal of Lipid Research, 2013, 54, 2410-2422.	4.2	84
6	β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels. Prostaglandins Leukotrienes and Essential Fatty Acids, 2015, 92, 33-40.	2.2	83
7	The low density lipoprotein receptor is not necessary for maintaining mouse brain polyunsaturated fatty acid concentrations. Journal of Lipid Research, 2008, 49, 147-152.	4.2	78
8	Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats. Journal of Lipid Research, 2014, 55, 62-74.	4.2	77
9	Rapid de-esterification and loss of eicosapentaenoic acid from rat brain phospholipids: an intracerebroventricular study. Journal of Neurochemistry, 2011, 116, 363-373.	3.9	75
10	Effect of dietary docosahexaenoic acid (DHA) in phospholipids or triglycerides on brain DHA uptake and accretion. Journal of Nutritional Biochemistry, 2016, 33, 91-102.	4.2	75
11	Dyslipidemia in retinal metabolic disorders. EMBO Molecular Medicine, 2019, 11, e10473.	6.9	51
12	Wnt signaling activates MFSD2A to suppress vascular endothelial transcytosis and maintain blood-retinal barrier. Science Advances, 2020, 6, eaba7457.	10.3	51
13	Genetic Ablation of CD36 Does not Alter Mouse Brain Polyunsaturated Fatty Acid Concentrations. Lipids, 2010, 45, 291-299.	1.7	46
14	Brain eicosapentaenoic acid metabolism as a lead for novel therapeutics in major depression. Brain, Behavior, and Immunity, 2020, 85, 21-28.	4.1	45
15	Chronic dietary n-6 PUFA deprivation leads to conservation of arachidonic acid and more rapid loss of DHA in rat brain phospholipids. Journal of Lipid Research, 2015, 56, 390-402.	4.2	37
16	The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats. Journal of Nutritional Biochemistry, 2016, 30, 167-176.	4.2	37
17	The very low density lipoprotein receptor is not necessary for maintaining brain polyunsaturated fatty acid concentrations. Prostaglandins Leukotrienes and Essential Fatty Acids, 2010, 82, 141-145.	2.2	34
18	Inhibiting Mitochondrial <i>β</i> -Oxidation Selectively Reduces Levels of Nonenzymatic Oxidative Polyunsaturated Fatty Acid Metabolites in the Brain. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 376-379.	4.3	28

Сниск Т Снем

#	Article	IF	CITATIONS
19	Intraperitoneal administration of docosahexaenoic acid for 14days increases serum unesterified DHA and seizure latency in the maximal pentylenetetrazol model. Epilepsy and Behavior, 2014, 33, 138-143.	1.7	23
20	Whole-Body Docosahexaenoic Acid Synthesis-Secretion Rates in Rats Are Constant across a Large Range of Dietary α-Linolenic Acid Intakes. Journal of Nutrition, 2017, 147, 37-44.	2.9	22
21	Dietary intake of unsaturated fatty acids modulates physiological properties of entorhinal cortex neurons in mice. Journal of Neurochemistry, 2012, 122, 427-443.	3.9	21
22	Phospholipid class-specific brain enrichment in response to lysophosphatidylcholine docosahexaenoic acid infusion. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1092-1098.	2.4	17
23	Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex. PLoS ONE, 2015, 10, e0132675.	2.5	16
24	Quantitation of Human Wholeâ€Body Synthesisâ€Secretion Rates of Docosahexaenoic Acid and Eicosapentaenoate Acid from Circulating Unesterified αâ€Linolenic Acid at Steady State. Lipids, 2018, 53, 547-558.	1.7	12
25	Intravenous infusion of docosahexaenoic acid increases serum concentrations in a dose-dependent manner and increases seizure latency in the maximal PTZ model. Epilepsy and Behavior, 2015, 50, 71-76.	1.7	10
26	Brainstem Concentrations of Cholesterol are not Influenced by Genetic Ablation of the Low-Density Lipoprotein Receptor. Neurochemical Research, 2009, 34, 311-315.	3.3	8
27	Protein arginine methyltransferase 8 modulates mitochondrial bioenergetics and neuroinflammation after hypoxic stress. Journal of Neurochemistry, 2021, 159, 742-761.	3.9	8
28	Brain PUFA Concentrations Are Differentially Affected by Interactions of Diet, Sex, Brain Regions, and Phospholipid Pools in Mice. Journal of Nutrition, 2020, 150, 3123-3132.	2.9	7
29	Loss of RAR-related orphan receptor alpha (RORα) selectively lowers docosahexaenoic acid in developing cerebellum. Prostaglandins Leukotrienes and Essential Fatty Acids, 2020, 152, 102036.	2.2	4