Jian Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2920563/publications.pdf Version: 2024-02-01

ΙΙΔΝ ΥΔΝΟ

#	Article	IF	CITATIONS
1	Estimating Rice Leaf Nitrogen Concentration: Influence of Regression Algorithms Based on Passive and Active Leaf Reflectance. Remote Sensing, 2017, 9, 951.	4.0	49
2	Multispectral LiDAR Point Cloud Classification: A Two-Step Approach. Remote Sensing, 2017, 9, 373.	4.0	43
3	Investigating the Potential of Using the Spatial and Spectral Information of Multispectral LiDAR for Object Classification. Sensors, 2015, 15, 21989-22002.	3.8	41
4	Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer. Scientific Reports, 2017, 7, 40362.	3.3	36
5	Using Different Regression Methods to Estimate Leaf Nitrogen Content in Rice by Fusing Hyperspectral LiDAR Data and Laser-Induced Chlorophyll Fluorescence Data. Remote Sensing, 2016, 8, 526.	4.0	30
6	Target Classification of Similar Spatial Characteristics in Complex Urban Areas by Using Multispectral LiDAR. Remote Sensing, 2022, 14, 238.	4.0	28
7	Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice. Optics Express, 2017, 25, 3743.	3.4	27
8	Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice. Scientific Reports, 2016, 6, 28787.	3.3	23
9	Laser-induced fluorescence characteristics of vegetation by a new excitation wavelength. Spectroscopy Letters, 2016, 49, 263-267.	1.0	19
10	Estimation of Multi-Species Leaf Area Index Based on Chinese GF-1 Satellite Data Using Look-Up Table and Gaussian Process Regression Methods. Sensors, 2020, 20, 2460.	3.8	18
11	Potential of vegetation indices combined with laser-induced fluorescence parameters for monitoring leaf nitrogen content in paddy rice. PLoS ONE, 2018, 13, e0191068.	2.5	17
12	Analyzing the performance of the first-derivative fluorescence spectrum for estimating leaf nitrogen concentration. Optics Express, 2019, 27, 3978.	3.4	16
13	True-Color Three-Dimensional Imaging and Target Classification Based on Hyperspectral LiDAR. Remote Sensing, 2019, 11, 1541.	4.0	15
14	Using HSI Color Space to Improve the Multispectral Lidar Classification Error Caused by Measurement Geometry. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 3567-3579.	6.3	15
15	Excitation Wavelength Analysis of Laser-Induced Fluorescence LiDAR for Identifying Plant Species. IEEE Geoscience and Remote Sensing Letters, 2016, 13, 977-981.	3.1	14
16	Active 3D Imaging of Vegetation Based on Multi-Wavelength Fluorescence LiDAR. Sensors, 2020, 20, 935.	3.8	13
17	Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra. Optics Express, 2016, 24, 19354.	3.4	12
18	Analyzing the Effect of Fluorescence Characteristics on Leaf Nitrogen Concentration Estimation. Remote Sensing, 2018, 10, 1402.	4.0	11

Jian Yang

#	Article	IF	CITATIONS
19	Analyzing the Effects of Hyperspectral ZhuHai-1 Band Combinations on LAI Estimation Based on the PROSAIL Model. Sensors, 2021, 21, 1869.	3.8	11
20	Vegetation identification based on characteristics of fluorescence spectral spatial distribution. RSC Advances, 2015, 5, 56932-56935.	3.6	10
21	Application of Hyperspectral LiDAR on 3-D Chlorophyll-Nitrogen Mapping of Rohdea Japonica in Laboratory. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 9667-9679.	4.9	10
22	Monitoring of Paddy Rice Varieties Based on the Combination of the Laser-Induced Fluorescence and Multivariate Analysis. Food Analytical Methods, 2017, 10, 2398-2403.	2.6	9
23	Improving the Selection of Vegetation Index Characteristic Wavelengths by Using the PROSPECT Model for Leaf Water Content Estimation. Remote Sensing, 2021, 13, 821.	4.0	9
24	Potential of Fluorescence Index Derived from the Slope Characteristics of Laser-Induced Chlorophyll Fluorescence Spectrum for Rice Leaf Nitrogen Concentration Estimation. Applied Sciences (Switzerland), 2019, 9, 916.	2.5	6
25	Selection of the optimal bands of first-derivative fluorescence characteristics for leaf nitrogen concentration estimation. Applied Optics, 2019, 58, 5720.	1.8	6
26	Combined application of 3D spectral features from multispectral LiDAR for classification. , 2017, , .		5
27	Leaf Biochemistry Parameters Estimation of Vegetation Using the Appropriate Inversion Strategy. Frontiers in Plant Science, 2020, 11, 533.	3.6	4
28	The characterization of plant species using firstâ€derivative fluorescence spectra. Luminescence, 2017, 32, 348-352.	2.9	1
29	Correcting the effect of the detection angular on laser-induced chlorophyll fluorescence. Journal of Physics Communications, 2020, 4, 015017.	1.2	1
30	The application of time decay characteristics of laserâ€induced fluorescence in the classification of vegetation. Luminescence, 2017, 32, 17-21.	2.9	0
31	The Effect of Principal Component Analysis Parameters on Solar-Induced Chlorophyll Fluorescence Signal Extraction. Applied Sciences (Switzerland), 2021, 11, 4883.	2.5	0