
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2919970/publications.pdf Version: 2024-02-01

NEIL CANUL

#	Article	IF	CITATIONS
1	A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 64-68.	3.3	211
2	Dynamic interactions between coastal storms and salt marshes: A review. Geomorphology, 2018, 301, 92-107.	1.1	171
3	Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nature Communications, 2017, 8, 14156.	5.8	167
4	Representing the function and sensitivity of coastal interfaces in Earth system models. Nature Communications, 2020, 11, 2458.	5.8	153
5	Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnology and Oceanography, 2016, 61, 1916-1931.	1.6	101
6	Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements. Limnology and Oceanography: Methods, 2009, 7, 119-131.	1.0	94
7	Estimates of suspended sediment entering San Francisco Bay from the Sacramento and San Joaquin Delta, San Francisco Bay, California. Journal of Hydrology, 2006, 323, 335-352.	2.3	81
8	Sediment transportâ€based metrics of wetland stability. Geophysical Research Letters, 2015, 42, 7992-8000.	1.5	80
9	Quantifying the Residence Time and Flushing Characteristics of a Shallow, Back-Barrier Estuary: Application of Hydrodynamic and Particle Tracking Models. Estuaries and Coasts, 2015, 38, 1719-1734.	1.0	80
10	Development of a coupled wave-flow-vegetation interaction model. Computers and Geosciences, 2017, 100, 76-86.	2.0	75
11	Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model. Journal of Geophysical Research F: Earth Surface, 2013, 118, 2045-2058.	1.0	70
12	Salt marsh erosion rates and boundary features in a shallow Bay. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1861-1875.	1.0	64
13	Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling. Estuaries and Coasts, 2016, 39, 311-332.	1.0	62
14	Decadal-Timescale Estuarine Geomorphic Change Under Future Scenarios of Climate and Sediment Supply. Estuaries and Coasts, 2010, 33, 15-29.	1.0	52
15	Marshes Are the New Beaches: Integrating Sediment Transport into Restoration Planning. Estuaries and Coasts, 2019, 42, 917-926.	1.0	52
16	Hindcasting of decadalâ€ŧimescale estuarine bathymetric change with a tidalâ€ŧimescale model. Journal of Geophysical Research, 2009, 114, .	3.3	46
17	Determining the drivers of suspended sediment dynamics in tidal marsh-influenced estuaries using high-resolution ocean color remote sensing. Remote Sensing of Environment, 2020, 240, 111682.	4.6	45
18	Calibration of an estuarine sediment transport model to sediment fluxes as an intermediate step for simulation of geomorphic evolution. Continental Shelf Research, 2009, 29, 148-158.	0.9	44

#	Article	IF	CITATIONS
19	Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements. Limnology and Oceanography, 2011, 56, 1355-1371.	1.6	43
20	Annual sediment flux estimates in a tidal strait using surrogate measurements. Estuarine, Coastal and Shelf Science, 2006, 69, 165-178.	0.9	42
21	Suspended sediment fluxes in a tidal wetland: Measurement, controlling factors, and error analysis. Estuaries and Coasts, 2005, 28, 812-822.	1.7	41
22	Tidal oscillation of sediment between a river and a bay: a conceptual model. Estuarine, Coastal and Shelf Science, 2004, 60, 81-90.	0.9	40
23	Understanding tidal marsh trajectories: evaluation of multiple indicators of marsh persistence. Environmental Research Letters, 2019, 14, 124073.	2.2	39
24	Simultaneous quantitation of plasma doxorubicin and prochlorperazine content by high-performance liquid chromatography. Biomedical Applications, 1997, 703, 217-224.	1.7	34
25	Metabolism of a nitrogen-enriched coastal marine lagoon during the summertime. Biogeochemistry, 2014, 118, 1-20.	1.7	34
26	Comparison of sediment supply to San Francisco Bay from watersheds draining the Bay Area and the Central Valley of California. Marine Geology, 2013, 345, 47-62.	0.9	33
27	Exchange of Nitrogen and Phosphorus Between a Shallow Lagoon and Coastal Waters. Estuaries and Coasts, 2014, 37, 63-73.	1.0	32
28	Temporal downscaling of decadal sediment load estimates to a daily interval for use in hindcast simulations. Journal of Hydrology, 2008, 349, 512-523.	2.3	31
29	Modeling future scenarios of light attenuation and potential seagrass success in a eutrophic estuary. Estuarine, Coastal and Shelf Science, 2014, 149, 13-23.	0.9	31
30	Evolution of Mid-Atlantic Coastal and Back-Barrier Estuary Environments in Response to a Hurricane: Implications for Barrier-Estuary Connectivity. Estuaries and Coasts, 2016, 39, 916-934.	1.0	30
31	Applying cumulative effects to strategically advance largeâ€scale ecosystem restoration. Frontiers in Ecology and the Environment, 2021, 19, 108-117.	1.9	30
32	Mercury concentrations and loads in a large river system tributary to San Francisco Bay, California, USA. Environmental Toxicology and Chemistry, 2009, 28, 2091-2100.	2.2	29
33	Spectral wave dissipation by submerged aquatic vegetation in a backâ€barrier estuary. Limnology and Oceanography, 2017, 62, 736-753.	1.6	29
34	Physical response of a backâ€barrier estuary to a postâ€tropical cyclone. Journal of Geophysical Research: Oceans, 2017, 122, 5888-5904.	1.0	29
35	Tidal and Groundwater Fluxes to a Shallow, Microtidal Estuary: Constraining Inputs Through Field Observations and Hydrodynamic Modeling. Estuaries and Coasts, 2012, 35, 1285-1298.	1.0	27
36	Physical and biogeochemical controls on light attenuation in a eutrophic, back-barrier estuary. Biogeosciences, 2014, 11, 7193-7205.	1.3	26

#	Article	IF	CITATIONS
37	Are Elevation and Openâ€Water Conversion of Salt Marshes Connected?. Geophysical Research Letters, 2020, 47, e2019GL086703.	1.5	26
38	Effect of roughness formulation on the performance of a coupled wave, hydrodynamic, and sediment transport model. Ocean Modelling, 2010, 33, 299-313.	1.0	25
39	Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model. Journal of Geophysical Research, 2011, 116, .	3.3	25
40	Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ Measurements. Estuaries and Coasts, 2012, 35, 1036-1048.	1.0	25
41	Deciphering the dynamics of inorganic carbon export from intertidal salt marshes using high-frequency measurements. Marine Chemistry, 2018, 206, 7-18.	0.9	25
42	Identifying Salt Marsh Shorelines from Remotely Sensed Elevation Data and Imagery. Remote Sensing, 2019, 11, 1795.	1.8	25
43	Changes in hydrodynamics and wave energy as a result of seagrass decline along the shoreline of a microtidal back-barrier estuary. Advances in Water Resources, 2019, 128, 183-192.	1.7	24
44	A nonlinear relationship between marsh size and sediment trapping capacity compromises salt marshes' stability. Geology, 2020, 48, 966-970.	2.0	24
45	The Spatial Structure of Tidal and Mean Circulation over the Inner Shelf South of Martha's Vineyard, Massachusetts. Journal of Physical Oceanography, 2013, 43, 1940-1958.	0.7	23
46	A geospatially resolved wetland vulnerability index: Synthesis of physical drivers. PLoS ONE, 2020, 15, e0228504.	1.1	23
47	Water level response in backâ€barrier bays unchanged following Hurricane Sandy. Geophysical Research Letters, 2014, 41, 3163-3171.	1.5	22
48	Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation. Biogeosciences, 2016, 13, 583-595.	1.3	21
49	Storm impacts on hydrodynamics and suspended-sediment fluxes in a microtidal back-barrier estuary. Marine Geology, 2018, 404, 1-14.	0.9	21
50	Thin-layer sediment addition to an existing salt marsh to combat sea-level rise and improve endangered species habitat in California, USA. Ecological Engineering, 2019, 136, 197-208.	1.6	21
51	A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler. , 2002, , 1.		19
52	Hydrologic Controls of Methane Dynamics in Karst Subterranean Estuaries. Global Biogeochemical Cycles, 2018, 32, 1759-1775.	1.9	19
53	Role of Tidal Wetland Stability in Lateral Fluxes of Particulate Organic Matter and Carbon. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1265-1277.	1.3	19
54	Observations and a linear model of water level in an interconnected inletâ€bay system. Journal of Geophysical Research: Oceans, 2017, 122, 2760-2780.	1.0	18

#	Article	IF	CITATIONS
55	Constancy of the relation between floc size and density in San Francisco Bay. Proceedings in Marine Science, 2007, 8, 75-91.	0.1	17
56	Sediment chemistry and toxicity in Barnegat Bay, New Jersey: Pre- and post-Hurricane Sandy, 2012–13. Marine Pollution Bulletin, 2016, 107, 472-488.	2.3	16
57	Balanced Sediment Fluxes in Southern California's Mediterranean-Climate Zone Salt Marshes. Estuaries and Coasts, 2016, 39, 1035-1049.	1.0	16
58	Quantifying Slopes as a Driver of Forest to Marsh Conversion Using Geospatial Techniques: Application to Chesapeake Bay Coastal-Plain, United States. Frontiers in Environmental Science, 2021, 9,	1.5	16
59	Spatiotemporal variability of light attenuation and net ecosystem metabolism in a back-barrier estuary. Ocean Science, 2020, 16, 593-614.	1.3	16
60	A novel approach for direct estimation of fresh groundwater discharge to an estuary. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	15
61	Sediment Delivery to a Tidal Marsh Platform Is Minimized by Source Decoupling and Flux Convergence. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005558.	1.0	15
62	Variability in marsh migration potential determined by topographic rather than anthropogenic constraints in the Chesapeake Bay region. Limnology and Oceanography Letters, 2022, 7, 321-331.	1.6	15
63	Discontinuous hindcast simulations of estuarine bathymetric change: A case study from Suisun Bay, California. Estuarine, Coastal and Shelf Science, 2011, 93, 142-150.	0.9	14
64	Quantification of Storm-Induced Bathymetric Change in a Back-Barrier Estuary. Estuaries and Coasts, 2017, 40, 22-36.	1.0	14
65	Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method (ESQM v5.2). Geoscientific Model Development, 2017, 10, 4511-4523.	1.3	14
66	Measuring sediment accretion in early tidal marsh restoration. Wetlands Ecology and Management, 2010, 18, 297-305.	0.7	12
67	Simulated Estuary-Wide Response of Seagrass (Zostera marina) to Future Scenarios of Temperature and Sea Level. Frontiers in Marine Science, 2020, 7, .	1.2	12
68	Simple Metrics Predict Saltâ€Marsh Sediment Fluxes. Geophysical Research Letters, 2019, 46, 12250-12257.	1.5	11
69	Estimation of Contraction Scour in Riverbed Using SERF. Journal of Waterway, Port, Coastal and Ocean Engineering, 2004, 130, 215-218.	0.5	10
70	Sediment Dynamics of a Divergent Bay–Marsh Complex. Estuaries and Coasts, 2021, 44, 1216-1230.	1.0	9
71	Modeling Marsh Dynamics Using a 3-D Coupled Wave-Flow-Sediment Model. Frontiers in Marine Science, 2021, 8, .	1.2	9
72	Development and Application of Landsat-Based Wetland Vegetation Cover and UnVegetated-Vegetated Marsh Ratio (UVVR) for the Conterminous United States. Estuaries and Coasts, 2022, 45, 1861-1878.	1.0	9

#	Article	IF	CITATIONS
73	Sediment Budget Estimates for a Highly Impacted Embayment with Extensive Wetland Loss. Estuaries and Coasts, 2021, 44, 608-626.	1.0	8
74	Chapter 31 Sensitivity and spin-up times of cohesive sediment transport models used to simulate bathymetric change. Proceedings in Marine Science, 2008, 9, 463-475.	0.1	6
75	Hydrodynamic and Morphologic Response of a Backâ€Barrier Estuary to an Extratropical Storm. Journal of Geophysical Research: Oceans, 2019, 124, 7700-7717.	1.0	6
76	Estimating timeâ€dependent connectivity in marine systems. Geophysical Research Letters, 2016, 43, 1193-1201.	1.5	5
77	Modeling the Dynamics of Salt Marsh Development in Coastal Land Reclamation. Geophysical Research Letters, 2022, 49, .	1.5	5
78	Chapter 24 Lateral variability of the estuarine turbidity maximum in a tidal strait. Proceedings in Marine Science, 2008, 9, 339-355.	0.1	4
79	Spatial distribution of water level impacting back-barrier bays. Natural Hazards and Earth System Sciences, 2019, 19, 1823-1838.	1.5	2
80	How Much Marsh Restoration Is Enough to Deliver Wave Attenuation Coastal Protection Benefits?. Frontiers in Marine Science, 2022, 8, .	1.2	2
81	Dataset of numerical modelling results of wave thrust on salt marsh boundaries with different seagrass coverages in a shallow back-barrier estuary. Data in Brief, 2019, 25, 104197.	0.5	1

Estimating Connectivity of Hard Clam (Mercenaria mercenaria) and Eastern Oyster (Crassostrea) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 3

83	Development of a submerged aquatic vegetation growth model in the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST v3.4) model. Geoscientific Model Development, 2020, 13, 5211-5228.	1.3	0	
----	---	-----	---	--