
$Tormod \; N \tilde{A}_{\mathsf{I}}^{\mathsf{I}} s$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/291970/publications.pdf Version: 2024-02-01

TOPMOD NÃ S

#	Article	IF	CITATIONS
1	Making sense of the "clean label―trends: A review of consumer food choice behavior and discussion of industry implications. Food Research International, 2017, 99, 58-71.	6.2	624
2	The Effect of Multiplicative Scatter Correction (MSC) and Linearity Improvement in NIR Spectroscopy. Applied Spectroscopy, 1988, 42, 1273-1284.	2.2	509
3	Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data. Chemometrics and Intelligent Laboratory Systems, 1995, 29, 233-241.	3.5	200
4	Analysing sensory panel performance in a proficiency test using the PanelCheck software. European Food Research and Technology, 2010, 230, 497-511.	3.3	106
5	Reduced risk of pre-eclampsia with organic vegetable consumption: results from the prospective Norwegian Mother and Child Cohort Study. BMJ Open, 2014, 4, e006143-e006143.	1.9	90
6	Path modelling by sequential PLS regression. Journal of Chemometrics, 2011, 25, 28-40.	1.3	81
7	Understanding data fusion within the framework of coupled matrix and tensor factorizations. Chemometrics and Intelligent Laboratory Systems, 2013, 129, 53-63.	3.5	80
8	Common and distinct components in data fusion. Journal of Chemometrics, 2017, 31, e2900.	1.3	71
9	Visualization of sensory profiling data for performance monitoring. LWT - Food Science and Technology, 2007, 40, 262-269.	5.2	70
10	Preference mapping by PO-PLS: Separating common and unique information in several data blocks. Food Quality and Preference, 2012, 24, 8-16.	4.6	62
11	Likelihood of buying healthy convenience food: An at-home testing procedure for ready-to-heat meals. Food Quality and Preference, 2012, 24, 171-178.	4.6	60
12	Multi-block regression based on combinations of orthogonalisation, PLS-regression and canonical correlation analysis. Chemometrics and Intelligent Laboratory Systems, 2013, 124, 32-42.	3.5	59
13	When the choice of the temporal method does make a difference: TCATA, TDS and TDS by modality for characterizing semi-solid foods. Food Quality and Preference, 2018, 66, 95-106.	4.6	56
14	Identifying and interpreting market segments using conjoint analysis. Food Quality and Preference, 2001, 12, 133-143.	4.6	46
15	Interpreting sensory data by combining principal component analysis and analysis of variance. Food Quality and Preference, 2009, 20, 167-175.	4.6	45
16	The Sequential and Orthogonalized PLS Regression for Multiblock Regression. Data Handling in Science and Technology, 2019, , 157-177.	3.1	45
17	A comparison of methods for analysing regression models with both spectral and designed variables. Journal of Chemometrics, 2004, 18, 451-464.	1.3	44
18	A comparison of methods for testing differences in predictive ability. Journal of Chemometrics, 2005, 19, 500-509.	1.3	42

Tormod Næs

#	Article	IF	CITATIONS
19	Handling of individual differences in rating-based conjoint analysis. Food Quality and Preference, 2011, 22, 241-254.	4.6	42
20	Consumer preferences for iced coffee determined by conjoint analysis: an exploratory study with <scp>N</scp> orwegian consumers. International Journal of Food Science and Technology, 2014, 49, 1565-1571.	2.7	40
21	Correcting for different use of the scale and the need for further analysis of individual differences in sensory analysis. Food Quality and Preference, 2008, 19, 197-209.	4.6	39
22	Multiâ€way models for sensory profiling data. Journal of Chemometrics, 2008, 22, 36-45.	1.3	38
23	Performance indices in descriptive sensory analysis – A complimentary screening tool for assessor and panel performance. Food Quality and Preference, 2013, 28, 122-133.	4.6	38
24	Interpretation, validation and segmentation of preference mapping models. Food Quality and Preference, 2014, 32, 198-209.	4.6	37
25	Web of ecological interactions in an experimental gut microbiota. Environmental Microbiology, 2010, 12, 2677-2687.	3.8	36
26	Extension of SO-PLS to multi-way arrays: SO-N-PLS. Chemometrics and Intelligent Laboratory Systems, 2017, 164, 113-126.	3.5	36
27	Regression models with process variables and parallel blocks of raw material measurements. Journal of Chemometrics, 2008, 22, 443-456.	1.3	35
28	A design and analysis strategy for situations with uncontrolled raw material variation. Journal of Chemometrics, 2004, 18, 45-52.	1.3	32
29	A similarity index for comparing coupled matrices. Journal of Chemometrics, 2018, 32, e3049.	1.3	31
30	A bridge between Tucker-1 and Carroll's generalized canonical analysis. Computational Statistics and Data Analysis, 2006, 50, 3086-3098.	1.2	30
31	A comparison of generalised procrustes analysis and multiple factor analysis for projective mapping data. Food Quality and Preference, 2015, 43, 34-46.	4.6	30
32	Application of sequential and orthogonalised-partial least squares (SO-PLS) regression to predict sensory properties of Cabernet Sauvignon wines from grape chemical composition. Food Chemistry, 2018, 256, 195-202.	8.2	24
33	Outlier and group detection in sensory panels using hierarchical cluster analysis with the Procrustes distance. Food Quality and Preference, 2004, 15, 195-208.	4.6	23
34	Selecting the number of factors in principal component analysis by permutation testing—Numerical and practical aspects. Journal of Chemometrics, 2017, 31, e2937.	1.3	22
35	Combining designed experiments with several blocks of spectroscopic data. Chemometrics and Intelligent Laboratory Systems, 2007, 88, 154-166.	3.5	20
36	Confidence ellipsoids for ASCA models based on multivariate regression theory. Journal of Chemometrics, 2018, 32, e2990.	1.3	20

Tormod Næs

#	Article	IF	CITATIONS
37	Validation of projective mapping as potential sensory screening tool for application by the honeybush herbal tea industry. Food Research International, 2017, 99, 275-286.	6.2	20
38	The relationships between consumer liking, sensory and chemical attributes of <i>Vitis vinifera</i> L. cv. Pinotage wines elaborated with different <i>Oenococcus oeni</i> starter cultures. Journal of the Science of Food and Agriculture, 2013, 93, 2829-2840.	3.5	19
39	SO-PLS as an exploratory tool for path modelling. Food Quality and Preference, 2014, 36, 122-134.	4.6	19
40	How good are ideas identified by an automatic idea detection system?. Creativity and Innovation Management, 2018, 27, 23-31.	3.3	18
41	Optimal Sorting of Raw Materials, Based on the Predicted End-Product Quality. Quality Engineering, 2002, 14, 459-478.	1.1	17
42	Alternative methods for combining information about products, consumers and consumers' acceptance based on path modelling. Food Quality and Preference, 2014, 31, 142-155.	4.6	17
43	Estimating and interpreting more than two consensus components in projective mapping: INDSCAL vs. multiple factor analysis (MFA). Food Quality and Preference, 2017, 58, 45-60.	4.6	17
44	Cage of covariance in calibration modeling: Regressing multiple and strongly correlated response variables onto a low rank subspace of explanatory variables. Chemometrics and Intelligent Laboratory Systems, 2021, 213, 104311.	3.5	17
45	Incorporating interactions in multi-block sequential and orthogonalised partial least squares regression. Journal of Chemometrics, 2011, 25, 601-609.	1.3	15
46	Optimised score plot by principal components of predictions. Chemometrics and Intelligent Laboratory Systems, 2003, 68, 61-74.	3.5	14
47	ldentifying outlying assessors in sensory profiling using fuzzy clustering and multi-block methodology. Food Quality and Preference, 2009, 20, 287-294.	4.6	14
48	The use of quantile regression in consumer studies. Food Quality and Preference, 2015, 40, 230-239.	4.6	12
49	Characterization of Commercial Rye Bread Based on Sensory Properties, Fluidity Index and Chemical Acidity. Journal of Sensory Studies, 2016, 31, 283-295.	1.6	12
50	A strategy for finding relevant clusters; with an application to microarray data. Journal of Chemometrics, 2005, 19, 482-491.	1.3	11
51	A comparison of two <scp>PLS</scp> â€based approaches to structural equation modeling. Journal of Chemometrics, 2019, 33, e3105.	1.3	11
52	Portion size selection as related to product and consumer characteristics studied by PLS path modelling. Food Quality and Preference, 2020, 79, 103613.	4.6	10
53	The use of LS–PLS for improved understanding, monitoring and prediction of cheese processing. Chemometrics and Intelligent Laboratory Systems, 2008, 93, 11-19.	3.5	9
54	The relation of psychological distress to salivary and serum cortisol levels in pregnant women shortly after the diagnosis of a structural fetal anomaly. Acta Obstetricia Et Gynecologica Scandinavica, 2012, 91, 68-78.	2.8	9

Tormod Næs

#	Article	IF	CITATIONS
55	Classification trees in consumer studies for combining both product attributes and consumer preferences with additional consumer characteristics. Food Quality and Preference, 2014, 33, 27-36.	4.6	9
56	Sequential and orthogonalized PLS (SOâ€PLS) regression for path analysis: Order of blocks and relations between effects. Journal of Chemometrics, 2021, 35, e3243.	1.3	9
57	Segmentation in projective mapping. Food Quality and Preference, 2019, 71, 8-20.	4.6	8
58	Sample-Specific Prediction Error Measures in Spectroscopy. Applied Spectroscopy, 2020, 74, 791-798.	2.2	6
59	Using unclassified observations for improving classifiers. Journal of Chemometrics, 2004, 18, 103-111.	1.3	5
60	Split-plot regression models with both design and spectroscopic variables. Journal of Chemometrics, 2005, 19, 521-531.	1.3	5
61	Sound quality perception of loudspeakers evaluated by different sensory descriptive methods and preference mapping. Journal of Sensory Studies, 2021, 36, .	1.6	5
62	Principal components analysis of descriptive sensory data: Reflections, challenges, and suggestions. Journal of Sensory Studies, 2021, 36, e12692.	1.6	5
63	SO-PLS as an alternative approach for handling multi-dimensionality in modelling different aspects of consumer expectations. Food Research International, 2020, 133, 109189.	6.2	5
64	The importance of functional marginality in model building — A case study. Chemometrics and Intelligent Laboratory Systems, 2007, 87, 72-80.	3.5	4
65	Combining analysis of variance and threeâ€way factor analysis methods for studying additive and multiplicative effects in sensory panel data. Journal of Chemometrics, 2015, 29, 29-37.	1.3	4
66	Diagnosing indirect relationships in multivariate calibration models. Journal of Chemometrics, 2021, 35, e3366.	1.3	3
67	Which factors influence the number of gemeprost pessaries used in inducing second-trimester abortions?. Acta Obstetricia Et Gynecologica Scandinavica, 2005, 84, 371-375.	2.8	2
68	Properties of prediction sorting. Journal of Chemometrics, 2004, 18, 92-102.	1.3	1
69	Which factors influence the number of gemeprost pessaries used in inducing second-trimester abortions?. Acta Obstetricia Et Gynecologica Scandinavica, 2005, 84, 371-375.	2.8	1
70	Individual Differences in Consumer Liking Data (Rating Based). , 2018, , 109-169.		1
71	Individual Differences in Projective Mapping and Sorting Data. , 2018, , 57-73.		Ο
72	Making sense of multiple distance matrices through common and distinct components. Journal of Chemometrics, 2021, 35, e3372.	1.3	0

#	Article	IF	CITATIONS
73	A quantile regression perspective on external preference mapping. AStA Advances in Statistical Analysis, 0, , 1.	0.9	0