Abhijeet S Sinha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/291918/publications.pdf

Version: 2024-02-01

32	756	17 h-index	27
papers	citations		g-index
35	35	35	1008
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	"Triply Activated―Phenyl 3-Iodopropiolates: Halogen-Bond Donors with Remarkable σ-Hole Potentials. Crystal Growth and Design, 2022, 22, 1538-1542.	3.0	4
2	A family of powerful halogen-bond donors: a structural and theoretical analysis of triply activated 3-iodo-1-phenylprop-2-yn-1-ones. CrystEngComm, 2022, 24, 738-742.	2.6	1
3	The Impact of Halogen Substituents on the Synthesis and Structure of Co-Crystals of Pyridine Amides. Molecules, 2021, 26, 1147.	3.8	4
4	Establishing Halogenâ€Bond Preferences in Molecules with Multiple Acceptor Sites. ChemPlusChem, 2021, 86, 1049-1057.	2.8	7
5	Assessment of Computational Tools for Predicting Supramolecular Synthons. Chemistry, 2021, 3, 612-629.	2.2	5
6	The Balance between Hydrogen Bonds, Halogen Bonds, and Chalcogen Bonds in the Crystal Structures of a Series of 1,3,4-Chalcogenadiazoles. Molecules, 2021, 26, 4125.	3.8	10
7	Traversing the Tightrope between Halogen and Chalcogen Bonds Using Structural Chemistry and Theory. Crystal Growth and Design, 2021, 21, 7168-7178.	3.0	12
8	Mapping out the Relative Influence of Hydrogen and Halogen Bonds in Crystal Structures of a Family of Amide-Substituted Pyridines. Crystal Growth and Design, 2020, 20, 7399-7410.	3.0	10
9	Cocrystals and Salts of Tetrazole-Based Energetic Materials. Crystal Growth and Design, 2020, 20, 2432-2439.	3.0	42
10	From Frustrated Packing to Tecton-Driven Porous Molecular Solids. Chemistry, 2020, 2, 179-192.	2.2	7
11	Enhancing chemical stability of tetranitro biimidazole-based energetic materials through co-crystallization. Canadian Journal of Chemistry, 2020, 98, 358-364.	1.1	9
12	Systematic investigation of hydrogen-bond propensities for informing co-crystal design and assembly. CrystEngComm, 2019, 21, 6048-6055.	2.6	27
13	Competition between hydrogen bonds and halogen bonds: a structural study. New Journal of Chemistry, 2018, 42, 10539-10547.	2.8	26
14	Modulating the physical properties of solid forms of urea using co-crystallization technology. Chemical Communications, 2018, 54, 4657-4660.	4.1	46
15	Supramolecular Chemistry of Some Metal Acetylacetonates with Auxiliary Pyridyl Sites. Crystal Growth and Design, 2018, 18, 6936-6945.	3.0	12
16	Structural Examination of Halogen-Bonded Co-Crystals of Tritopic Acceptors. Molecules, 2018, 23, 163.	3.8	7
17	Cocrystals and a Salt of the Bioactive Flavonoid: Naringenin. Crystal Growth and Design, 2018, 18, 4571-4577.	3.0	23
18	Evaluating Competing Intermolecular Interactions through Molecular Electrostatic Potentials and Hydrogen-Bond Propensities. Crystal Growth and Design, 2018, 18, 466-478.	3.0	36

#	Article	IF	CITATIONS
19	Using structural mimics for accessing and exploring structural landscapes of poorly soluble molecular solids. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 42-48.	1.1	3
20	Competition and selectivity in supramolecular synthesis: structural landscape around 1-(pyridylmethyl)-2,2′-biimidazoles. Faraday Discussions, 2017, 203, 371-388.	3.2	17
21	Exploring binding preferences in co-crystals of conformationally flexible multitopic ligands. CrystEngComm, 2017, 19, 4605-4614.	2.6	10
22	The Role of Halogen Bonding in Controlling Assembly and Organization of Cu(II)-Acac Based Coordination Complexes. Crystals, 2017, 7, 226.	2.2	25
23	Impact and importance of electrostatic potential calculations for predicting structural patterns of hydrogen and halogen bonding. CrystEngComm, 2016, 18, 8631-8636.	2.6	60
24	Design and Synthesis of Ternary Cocrystals Using Carboxyphenols and Two Complementary Acceptor Compounds. Crystal Growth and Design, 2016, 16, 59-69.	3.0	40
25	Novel co-crystals of the nutraceutical sinapic acid. CrystEngComm, 2015, 17, 4832-4841.	2.6	39
26	Investigating Câ- \mathbf{S} Â-Â-Â-I Halogen Bonding for Cocrystallization with Primary Thioamides. Crystal Growth and Design, 2015, 15, 3442-3451.	3.0	27
27	Cocrystallization of Nutraceuticals. Crystal Growth and Design, 2015, 15, 984-1009.	3.0	87
28	Enantioselective copper catalysed Câ \in "H insertion reaction of 2-sulfonyl-2-diazoacetamides to form \hat{l}^3 -lactams. Organic and Biomolecular Chemistry, 2014, 12, 7612-7628.	2.8	25
29	Synthesis of ketoximes via a solvent-assisted and robust mechanochemical pathway. RSC Advances, 2013, 3, 8168.	3.6	19
30	Structural Chemistry of Oximes. Crystal Growth and Design, 2013, 13, 2687-2695.	3.0	43
31	A versatile and green mechanochemical route for aldehyde–oxime conversions. Chemical Communications, 2012, 48, 11289.	4.1	49
32	Halogen bonding or close packing? Examining the structural landscape in a series of Cu(ii)-acac complexes. Dalton Transactions, 2011, 40, 12160.	3.3	24