
Araceli DÃ-az-Perales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2918690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are Physicochemical Properties Shaping the Allergenic Potency of Plant Allergens?. Clinical Reviews in Allergy and Immunology, 2022, 62, 37-63.	6.5	99
2	Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens?. Clinical Reviews in Allergy and Immunology, 2022, 62, 1-36.	6.5	86
3	Plant non-specific lipid transfer proteins: An overview. Plant Physiology and Biochemistry, 2022, 171, 115-127.	5.8	43
4	NLRP3 priming due to skin damage precedes LTP allergic sensitization in a mouse model. Scientific Reports, 2022, 12, 3329.	3.3	8
5	Identification and molecular characterization of a novel non-specific lipid transfer protein (TdLTP2) from durum wheat. PLoS ONE, 2022, 17, e0266971.	2.5	5
6	Realâ€life evaluation of molecular multiplex IgE test methods in the diagnosis of pollen associated food allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3028-3040.	5.7	11
7	Lipid Ligands and Allergenic LTPs: Redefining the Paradigm of the Protein-Centered Vision in Allergy. Frontiers in Allergy, 2022, 3, .	2.8	6
8	The diagnosis and management of allergic reactions in patients sensitized to nonâ€specific lipid transfer proteins. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2433-2446.	5.7	42
9	Oral Mucosa as a Potential Site for Diagnosis and Treatment of Allergic and Autoimmune Diseases. Foods, 2021, 10, 970.	4.3	9
10	Molecular allergology and its impact in specific allergy diagnosis and therapy. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3642-3658.	5.7	30
11	Nonâ€specific lipidâ€transfer proteins: Allergen structure and function, crossâ€reactivity, sensitization, and epidemiology. Clinical and Translational Allergy, 2021, 11, e12010.	3.2	67
12	The Role of Sphingolipids in Allergic Disorders. Frontiers in Allergy, 2021, 2, 675557.	2.8	13
13	The key to the allergenicity of lipid transfer protein (LTP) ligands: A structural characterization. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158928.	2.4	18
14	Developing an Optical Interferometric Detection Method based biosensor for detecting specific SARS-CoV-2 immunoglobulins in Serum and Saliva, and their corresponding ELISA correlation. Sensors and Actuators B: Chemical, 2021, 345, 130394.	7.8	23
15	Alternaria as an Inducer of Allergic Sensitization. Journal of Fungi (Basel, Switzerland), 2021, 7, 838.	3.5	27
16	The TNF-like weak inducer of the apoptosis/fibroblast growth factor–inducible molecule 14 axis mediates histamine and platelet-activating factor–induced subcutaneous vascular leakage and anaphylactic shock. Journal of Allergy and Clinical Immunology, 2020, 145, 583-596.e6.	2.9	19
17	New insights into the sensitization to nonspecific lipid transfer proteins from pollen and food: New role of allergen Ole e 7. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 798-807.	5.7	8
18	Performance of basophil activation test and specific IgG4 as diagnostic tools in nonspecific lipid transfer protein allergy: Antwerpâ€Barcelona comparison. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 616-624.	5.7	11

#	Article	IF	CITATIONS
19	Structural Bases for the Allergenicity of Fra a 1.02 in Strawberry Fruits. Journal of Agricultural and Food Chemistry, 2020, 68, 10951-10961.	5.2	11
20	A new optical interferometric-based in vitro detection system for the specific IgE detection in serum of the main peach allergen. Biosensors and Bioelectronics, 2020, 169, 112641.	10.1	5
21	Pru p 9, a new allergen eliciting respiratory symptoms in subjects sensitized to peach tree pollen. PLoS ONE, 2020, 15, e0230010.	2.5	11
22	Patterns of sensitization to inhalant allergens, Ole e 1 and Ole e 7 in children and adolescents born in the same area with different origin Journal of Allergy and Clinical Immunology, 2020, 145, AB129.	2.9	0
23	Pru p 9 and Ole e 6-like, two new Peach tree pollen allergens, can elicit respiratory symptoms in children. Journal of Allergy and Clinical Immunology, 2020, 145, AB72.	2.9	0
24	Group 1 allergens, transported by mold spores, induce asthma exacerbation in a mouse model. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2388-2391.	5.7	7
25	Dynamic plasticity of the lipid antigen-binding site of CD1d is crucially favoured by acidic pH and helper proteins. Scientific Reports, 2020, 10, 5714.	3.3	4
26	Structural Dynamics of the Lipid Antigen-Binding Site of CD1d Protein. Biomolecules, 2020, 10, 532.	4.0	4
27	Pru p 3â€Glycodendropeptides Based on Mannoses Promote Changes in the Immunological Properties of Dendritic and Tâ€Cells from LTPâ€Allergic Patients. Molecular Nutrition and Food Research, 2019, 63, e1900553.	3.3	15
28	Effect of pre- and post-weaning dietary supplementation with arginine and glutamine on rabbit performance and intestinal health. BMC Veterinary Research, 2019, 15, 199.	1.9	9
29	Oral immunotherapy with peach juice in patients allergic to LTPs. Allergy, Asthma and Clinical Immunology, 2019, 15, 60.	2.0	8
30	Applying the adverse outcome pathway (AOP) for food sensitization to support in vitro testing strategies. Trends in Food Science and Technology, 2019, 85, 307-319.	15.1	16
31	Sensitization and Respiratory symptoms induced by Peach tree pollen in highly exposed Children and Adolescents Journal of Allergy and Clinical Immunology, 2019, 143, AB235.	2.9	0
32	Interaction of Alt a 1 with SLC22A17 in the airway mucosa. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2167-2180.	5.7	10
33	Peach tree pollen and Pru p 9 may induce rhinoconjunctivitis and asthma in childrenâ€. Pediatric Allergy and Immunology, 2019, 30, 662-665.	2.6	5
34	Energy Landscapes of Ligand Motion Inside the Tunnel-Like Cavity of Lipid Transfer Proteins: The Case of the Pru p 3 Allergen. International Journal of Molecular Sciences, 2019, 20, 1432.	4.1	9
35	Glycosylated nanostructures in sublingual immunotherapy induce long-lasting tolerance in LTP allergy mouse model. Scientific Reports, 2019, 9, 4043.	3.3	23
36	Peach Tree Pollen and Prunus persica 9 Sensitisation and Allergy in Children and Adolescents. International Archives of Allergy and Immunology, 2019, 180, 212-220.	2.1	10

#	Article	IF	CITATIONS
37	Identification and molecular characterization of allergenic nonâ€specific lipidâ€transfer protein from durum wheat (<i>Triticum turgidum</i>). Clinical and Experimental Allergy, 2019, 49, 120-129.	2.9	14
38	Transcriptional Profiling of Dendritic Cells in a Mouse Model of Foodâ€Antigenâ€Induced Anaphylaxis Reveals the Upregulation of Multiple Immuneâ€Related Pathways. Molecular Nutrition and Food Research, 2019, 63, e1800759.	3.3	4
39	Tolerance induction to peach using glycosylated nanostructures including Pru p 3-Epitope. Journal of Allergy and Clinical Immunology, 2018, 141, AB248.	2.9	0
40	Sensitization to Peach tree pollen in a non-exposed population. Journal of Allergy and Clinical Immunology, 2018, 141, AB30.	2.9	0
41	Peach pollen sensitisation is highly prevalent in areas of great extension of peach tree cultivar. Journal of Allergy and Clinical Immunology, 2018, 141, AB31.	2.9	5
42	Current (Food) Allergenic Risk Assessment: Is It Fit for Novel Foods? Status Quo and Identification of Gaps. Molecular Nutrition and Food Research, 2018, 62, 1700278.	3.3	42
43	Immunological Changes Induced in Peach Allergy Patients with Systemic Reactions by Pru p 3 Sublingual Immunotherapy. Molecular Nutrition and Food Research, 2018, 62, 1700669.	3.3	39
44	Identification of a relevant allergen in the induction of rhinoconjuntivitis in subjects sensitized to peach pollen. Journal of Allergy and Clinical Immunology, 2018, 141, AB243.	2.9	1
45	Profilin, a Change in the Paradigm. Journal of Investigational Allergology and Clinical Immunology, 2018, 28, 1-12.	1.3	53
46	Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde. International Journal of Molecular Sciences, 2018, 19, 1409.	4.1	13
47	A Comparative Study of Human Saposins. Molecules, 2018, 23, 422.	3.8	7
48	The clinical and immunological effects of Pru p 3 sublingual immunotherapy on peach and peanut allergy in patients with systemic reactions. Clinical and Experimental Allergy, 2017, 47, 339-350.	2.9	64
49	Mechanisms underlying induction of allergic sensitization by Pru p 3. Clinical and Experimental Allergy, 2017, 47, 1398-1408.	2.9	38
50	A relevant IgE-reactive 28 kDa protein identified from Salsola kali pollen extract by proteomics is a natural degradation product of an integral 47 kDa polygalaturonase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1067-1076.	2.3	10
51	Pru p 3â€Epitopeâ€based sublingual immunotherapy in a murine model for the treatment of peach allergy. Molecular Nutrition and Food Research, 2017, 61, 1700110.	3.3	22
52	LPS promotes Th2 dependent sensitisation leading to anaphylaxis in a Pru p 3 mouse model. Scientific Reports, 2017, 7, 40449.	3.3	28
53	Identification of the ligand of Pru p 3, a peach LTP. Plant Molecular Biology, 2017, 94, 33-44.	3.9	31
54	lgE-reactivity profiles to nonspecific lipid transfer proteins in a northwestern European country. Journal of Allergy and Clinical Immunology, 2017, 139, 679-682.e5.	2.9	37

#	Article	IF	CITATIONS
55	Nut Allergy in Two Different Areas of Spain: Differences in Clinical and Molecular Pattern. Nutrients, 2017, 9, 909.	4.1	16
56	Multifactorial Modulation of Food-Induced Anaphylaxis. Frontiers in Immunology, 2017, 8, 552.	4.8	4
57	Anaphylaxis to hidden potato allergens in a peach and egg allergic boy. European Annals of Allergy and Clinical Immunology, 2017, 49, 45-48.	1.0	2
58	Detection of major food allergens in amniotic fluid: initial allergenic encounter during pregnancy. Pediatric Allergy and Immunology, 2016, 27, 716-720.	2.6	31
59	Examining the effect of High Pressure Processing on the allergenic potential of the major allergen in peach (Pru p 3). Innovative Food Science and Emerging Technologies, 2016, 38, 334-341.	5.6	22
60	Nonsteroidal antiâ€inflammatory drugs enhance IgEâ€mediated activation of human basophils in patients with food anaphylaxis dependent on and independent of nonsteroidal antiâ€inflammatory drugs. Clinical and Experimental Allergy, 2016, 46, 1111-1119.	2.9	26
61	6th International Symposium on Molecular Allergology (ISMA). Clinical and Translational Allergy, 2016, 6, .	3.2	2
62	Low Levels of LPS Promotes a Th2 Sensitization to Pru p 3 Generating Anaphylactic Mice. Journal of Allergy and Clinical Immunology, 2016, 137, AB150.	2.9	0
63	The Clinical and Immunological Effects of Pru p 3 Slit on Peach and Peanut Tolerance in Patients with Systemic Allergic Reactions. Journal of Allergy and Clinical Immunology, 2016, 137, AB97.	2.9	Ο
64	Allergen-Associated Immunomodulators: Modifying Allergy Outcome. Archivum Immunologiae Et Therapiae Experimentalis, 2016, 64, 339-347.	2.3	17
65	Computational study of pH-dependent oligomerization and ligand binding in Alt a 1, a highly allergenic protein with a unique fold. Journal of Computer-Aided Molecular Design, 2016, 30, 365-379.	2.9	8
66	Characterisation of a flavonoid ligand of the fungal protein Alt a 1. Scientific Reports, 2016, 6, 33468.	3.3	28
67	Clinical presentation, allergens, and management of wheat allergy. Expert Review of Clinical Immunology, 2016, 12, 563-572.	3.0	35
68	Is the performance of ImmunoCAP ISAC 112 sufficient to diagnose peach and apple allergies?. Annals of Allergy, Asthma and Immunology, 2016, 116, 162-163.	1.0	6
69	Is Microarray Analysis Really Useful and Sufficient to Diagnose Nut Allergy in the Mediterranean Area?. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 31-39.	1.3	14
70	Clinical Performance of Commercial ISAC 112 Allergen Microarray Versus Noncommercial RIRAAF Platform for the Diagnosis of Plant Food and Olive Pollen Allergies. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 185-187.	1.3	4
71	The Major Allergens of Birch Pollen and Cow Milk, Bet v 1 and Bos d 5, Are Structurally Related to Human Lipocalin 2, Enabling Them to Manipulate T-Helper Cells Depending on Their Load with Siderophore-Bound Iron. Journal of Allergy and Clinical Immunology, 2015, 135, AB187.	2.9	0
72	Influence of age on IgE response in peanutâ€allergic children and adolescents from the Mediterranean area. Pediatric Allergy and Immunology, 2015, 26, 497-502.	2.6	15

#	Article	IF	CITATIONS
73	Response to major peanut and peach allergens in a population of children allergic to peanut. Clinical and Translational Allergy, 2015, 5, P128.	3.2	0
74	Response to major peach and peanut allergens in a population of children allergic to peach. Clinical and Translational Allergy, 2015, 5, P129.	3.2	0
75	Occupational allergic multiorgan disease induced by wheat flour. Journal of Allergy and Clinical Immunology, 2015, 136, 1114-1116.	2.9	7
76	A Recombinant Sal k 1 Isoform as an Alternative to the Polymorphic Allergen from <i>Salsola kali</i> Pollen for Allergy Diagnosis. International Archives of Allergy and Immunology, 2015, 167, 83-93.	2.1	14
77	Challenges for Allergy Diagnosis in Regions with Complex Pollen Exposures. Current Allergy and Asthma Reports, 2015, 15, 496.	5.3	23
78	Sensitive detection of major food allergens in breast milk: first gateway for allergenic contact during breastfeeding. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1024-1027.	5.7	18
79	Impact of glutathione on the allergenicity of the peach lipid transfer protein Pru p 3. Journal of Investigational Allergology and Clinical Immunology, 2015, 25, 47-54.	1.3	2
80	Immune Polarization in Allergic Patients: Role of the Innate Immune System. Journal of Investigational Allergology and Clinical Immunology, 2015, 25, 251-8.	1.3	3
81	Bronchial Challenge With Tri a 14 as an Alternative Diagnostic Test for Baker's Asthma. Journal of Investigational Allergology and Clinical Immunology, 2015, 25, 352-7.	1.3	4
82	The Major Cow Milk Allergen Bos d 5 Manipulates T-Helper Cells Depending on Its Load with Siderophore-Bound Iron. PLoS ONE, 2014, 9, e104803.	2.5	55
83	Bet v 1 from birch pollen is a lipocalin-like protein acting as allergen only when devoid of iron by promoting Th2 lymphocytes Journal of Biological Chemistry, 2014, 289, 23329.	3.4	3
84	Molecular Dynamics of Major Allergens from <i>Alternaria</i> , Birch Pollen and Peach. Molecular Informatics, 2014, 33, 682-694.	2.5	12
85	The role of N â€glycosylation in kiwi allergy. Food Science and Nutrition, 2014, 2, 260-271.	3.4	17
86	Basophil response to peanut allergens in Mediterranean peanutâ€allergic patients. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 964-968.	5.7	22
87	Alt a 1 from <i>Alternaria</i> interacts with PR5 thaumatinâ€like proteins. FEBS Letters, 2014, 588, 1501-1508.	2.8	43
88	Role of Art v 3 in pollinosis of patients allergic to Pru p 3. Journal of Allergy and Clinical Immunology, 2014, 133, 1018-1025.e3.	2.9	44
89	Bet v 1 from Birch Pollen Is a Lipocalin-like Protein Acting as Allergen Only When Devoid of Iron by Promoting Th2 Lymphocytes. Journal of Biological Chemistry, 2014, 289, 17416-17421.	3.4	56
90	Distortion from planarity in arenes produced by internal rotation of one single hydroxyl hydrogen: The case of alternariol. Journal of Molecular Graphics and Modelling, 2014, 53, 140-147.	2.4	2

#	Article	IF	CITATIONS
91	Basophils response to Pru p 3 and Ara h 9 in patients sensitised to peach under specific immunotherapy. Clinical and Translational Allergy, 2014, 4, .	3.2	0
92	Identification of Helianthus annuus allergens in subjects with allergy to sunflower. Clinical and Translational Allergy, 2014, 4, P14.	3.2	2
93	The role of n plant glycosylation in Act d 2 allergenicity. Clinical and Translational Allergy, 2014, 4, .	3.2	0
94	Component resolved diagnosis in baker's asthma. Clinical and Translational Allergy, 2014, 4, .	3.2	0
95	A safe foodstuff for wheat allergic patients. Clinical and Translational Allergy, 2014, 4, .	3.2	0
96	Component Resolved Diagnosis In Baker's Asthma. Journal of Allergy and Clinical Immunology, 2014, 133, AB151.	2.9	0
97	Component-resolved diagnosis of wheat flour allergy in baker's asthma. Journal of Allergy and Clinical Immunology, 2014, 134, 480-483.e3.	2.9	23
98	High Prevalence of Lipid Transfer Protein Sensitization in Apple Allergic Patients with Systemic Symptoms. PLoS ONE, 2014, 9, e107304.	2.5	25
99	Immune Suppressive Effect of Cinnamaldehyde Due to Inhibition of Proliferation and Induction of Apoptosis in Immune Cells: Implications in Cancer. PLoS ONE, 2014, 9, e108402.	2.5	38
100	Oral immunotherapy in children with IgE-mediated wheat allergy: outcome and molecular changes. Journal of Investigational Allergology and Clinical Immunology, 2014, 24, 240-8.	1.3	29
101	Anaphylaxis mediated by thaumatin-like proteins. Journal of Investigational Allergology and Clinical Immunology, 2014, 24, 448-9.	1.3	2
102	Lipid transfer protein: a link between food and respiratory allergy. Clinical and Translational Allergy, 2013, 3, .	3.2	0
103	Food allergy: management, diagnosis and treatment strategies. Immunotherapy, 2013, 5, 755-768.	2.0	4
104	Modeling iron-catecholates binding to NGAL protein. Journal of Molecular Graphics and Modelling, 2013, 45, 111-121.	2.4	17
105	Identification of thaumatinâ€ŀike protein and aspartyl protease as new major allergens in lettuce (<i><scp>L</scp>actuca sativa</i>). Molecular Nutrition and Food Research, 2013, 57, 2245-2252.	3.3	11
106	Unlocking the resistance to wheat lipid transfer protein. Journal of Allergy and Clinical Immunology, 2013, 132, 1257-1258.	2.9	4
107	Characterization of Apple Allergy in A Mediterranean Population. Journal of Allergy and Clinical Immunology, 2013, 131, AB88.	2.9	0
108	Profile of Sensitization to Sunflower Seedin a Large Population Highly Exposed. Journal of Allergy and Clinical Immunology, 2013, 131, AB87.	2.9	0

#	Article	IF	CITATIONS
109	Subjects Sensitized to Sunflower Seed (Helianthus annuus) Are Tolerant in a High Proportion of Cases. Journal of Allergy and Clinical Immunology, 2013, 131, AB87.	2.9	1
110	Basophil Response to Peanut Allergens in Mediterranean Peanut-Allergic Patients. Journal of Allergy and Clinical Immunology, 2013, 131, AB85.	2.9	0
111	Allergy to Uncommon Pets: New Allergies but the Same Allergens. Frontiers in Immunology, 2013, 4, 492.	4.8	28
112	Purification and Characterization of AsES Protein. Journal of Biological Chemistry, 2013, 288, 14098-14113.	3.4	43
113	Transport of <scp>P</scp> ru p 3 across gastrointestinal epithelium – an essential step towards the induction of food allergy?. Clinical and Experimental Allergy, 2013, 43, 1374-1383.	2.9	54
114	Diagnosis and Management of Grain-Induced Asthma. Allergy, Asthma and Immunology Research, 2013, 5, 348.	2.9	78
115	Aminopeptidase O. , 2013, , 438-442.		0
116	Antigenic Proteins Involved in Occupational Rhinitis and Asthma Caused by Obeche Wood (Triplochiton Scleroxylon). PLoS ONE, 2013, 8, e53926.	2.5	15
117	Allergenic Characterization of New Mutant Forms of Pru p 3 as New Immunotherapy Vaccines. Clinical and Developmental Immunology, 2013, 2013, 1-12.	3.3	7
118	Plant Food Allergy in Patients with Pollinosis from the Mediterranean Area. International Archives of Allergy and Immunology, 2012, 159, 346-354.	2.1	33
119	Effect of Pru p 3 on dendritic cell maturation and T-lymphocyte proliferation in peach allergic patients. Annals of Allergy, Asthma and Immunology, 2012, 109, 52-58.	1.0	25
120	Occupational asthma caused by IgE-mediated sensitization to multiple woods. Journal of Allergy and Clinical Immunology, 2012, 129, 254-256.e2.	2.9	1
121	Sensitization To Multiple Woods Caused By An Ige-mediated Mechanism. Journal of Allergy and Clinical Immunology, 2012, 129, AB168.	2.9	0
122	Geographical Variability In The Ltp Recognition In A Large Sample Of Rosaceae Fruit Allergic Patients. Journal of Allergy and Clinical Immunology, 2012, 129, AB33.	2.9	0
123	Pru p 3 acts as a strong sensitizer for peanut allergy in Spain. Journal of Allergy and Clinical Immunology, 2012, 130, 1432-1434.e3.	2.9	42
124	The Involvement of Thaumatin-Like Proteins in Plant Food Cross-Reactivity: A Multicenter Study Using a Specific Protein Microarray. PLoS ONE, 2012, 7, e44088.	2.5	67
125	Computational study of ligand binding in lipid transfer proteins: Structures, interfaces, and free energies of proteinâ€lipid complexes. Journal of Computational Chemistry, 2012, 33, 1831-1844.	3.3	18
126	Graph Based Study of Allergen Cross-Reactivity of Plant Lipid Transfer Proteins (LTPs) Using Microarray in a Multicenter Study. PLoS ONE, 2012, 7, e50799.	2.5	46

#	Article	IF	CITATIONS
127	LocaPep: Localization of Epitopes on Protein Surfaces Using Peptides from Phage Display Libraries. Journal of Chemical Information and Modeling, 2011, 51, 1465-1473.	5.4	16
128	Characteristics of a Novel Allergen of Samba Wood. Journal of Allergy and Clinical Immunology, 2011, 127, AB177-AB177.	2.9	0
129	Plant Lipid Transfer Protein Allergens: No Cross-Reactivity between Those from Foods and Olive and <i>Parietaria</i> Pollen. International Archives of Allergy and Immunology, 2011, 156, 291-296.	2.1	53
130	Pollen and plant food profilin allergens show equivalent IgE reactivity. Annals of Allergy, Asthma and Immunology, 2011, 106, 429-435.	1.0	26
131	Sensitization profiles to purified plant food allergens among pediatric patients with allergy to banana. Pediatric Allergy and Immunology, 2011, 22, 186-195.	2.6	41
132	A mutant of the major melon allergen, Cuc m 2, with reduced IgE binding capacity is a good candidate for specific immunotherapy. Molecular Immunology, 2011, 49, 504-511.	2.2	12
133	Wheat allergens associated with Baker's asthma. Journal of Investigational Allergology and Clinical Immunology, 2011, 21, 81-92; quiz 94.	1.3	86
134	Characterization of lgE epitopes of Cuc m 2, the major melon allergen, and their role in crossâ€reactivity with pollen profilins. Clinical and Experimental Allergy, 2010, 40, 174-181.	2.9	30
135	Componentâ€resolved diagnosis of allergy: more is better?. Clinical and Experimental Allergy, 2010, 40, 836-838.	2.9	17
136	Characterization of peach thaumatinâ€like proteins and their identification as major peach allergens. Clinical and Experimental Allergy, 2010, 40, 1422-1430.	2.9	73
137	A New Lipid Transfer Protein Homolog Identified as an IgE-Binding Antigen from Japanese Cedar Pollen. Bioscience, Biotechnology and Biochemistry, 2010, 74, 504-509.	1.3	15
138	Work-related sensitization and respiratory symptoms in carpentry apprentices exposed to wood dust and diisocyanates. Annals of Allergy, Asthma and Immunology, 2010, 105, 24-30.	1.0	18
139	Anaphylaxis to Wheat Flour-Derived Foodstuffs and the Lipid Transfer Protein Syndrome: A Potential Role of Wheat Lipid Transfer Protein Tri a 14. International Archives of Allergy and Immunology, 2010, 152, 178-183.	2.1	38
140	Role Of Dendritic Cells In Allergic Reactions To Pru P 3. Journal of Allergy and Clinical Immunology, 2010, 125, AB220.	2.9	0
141	Recombinant lipid transfer protein Tri a 14: a novel heat and proteolytic resistant tool for the diagnosis of baker's asthma. Clinical and Experimental Allergy, 2009, 39, 1267-1276.	2.9	57
142	T-cell epitopes of the major peach allergen, Pru p 3: Identification and differential T-cell response of peach-allergic and non-allergic subjects. Molecular Immunology, 2009, 46, 722-728.	2.2	49
143	Molecular basis of allergen cross-reactivity: Non-specific lipid transfer proteins from wheat flour and peach fruit as models. Molecular Immunology, 2009, 47, 534-540.	2.2	47
144	Why can patients with baker's asthma tolerate wheat flour ingestion? Is wheat pollen allergy relevant?. Allergologia Et Immunopathologia, 2009, 37, 203-204.	1.7	172

#	Article	IF	CITATIONS
145	Salt-Soluble Proteins from Wheat-Derived Foodstuffs Show Lower Allergenic Potency than Those from Raw Flour. Journal of Agricultural and Food Chemistry, 2009, 57, 3325-3330.	5.2	24
146	Mimotope mapping as a complementary strategy to define allergen IgE-epitopes: Peach Pru p 3 allergen as a modelâʿ†. Molecular Immunology, 2008, 45, 2269-2276.	2.2	86
147	Plant food allergens: peach non-specific lipid transfer protein Pru p 3 as a model. A review. Spanish Journal of Agricultural Research, 2008, 6, 30.	0.6	2
148	Plant non-specific lipid transfer proteins: An interface between plant defence and human allergy. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 781-791.	2.4	175
149	Wheat lipid transfer protein is a major allergen associated with baker's asthma. Journal of Allergy and Clinical Immunology, 2007, 120, 1132-1138.	2.9	132
150	An experimental and modeling-based approach to locate IgE epitopes of plant profilin allergens. Journal of Allergy and Clinical Immunology, 2007, 119, 1481-1488.	2.9	39
151	Sensitization to Cannabis sativa caused by a novel allergenic lipid transfer protein, Can s 3. Journal of Allergy and Clinical Immunology, 2007, 120, 1459-1460.	2.9	59
152	Identification and Characterization of Human Archaemetzincin-1 and -2, Two Novel Members of a Family of Metalloproteases Widely Distributed in Archaea. Journal of Biological Chemistry, 2005, 280, 30367-30375.	3.4	25
153	Identification of Human Aminopeptidase O, a Novel Metalloprotease with Structural Similarity to Aminopeptidase B and Leukotriene A4 Hydrolase. Journal of Biological Chemistry, 2005, 280, 14310-14317.	3.4	36
154	Human Polyserase-2, a Novel Enzyme with Three Tandem Serine Protease Domains in a Single Polypeptide Chain. Journal of Biological Chemistry, 2005, 280, 1953-1961.	3.4	15
155	Latex-vegetable syndrome due to custard apple and aubergine: new variations of the hevein symphony. Journal of Investigational Allergology and Clinical Immunology, 2005, 15, 308-11.	1.3	6
156	Respiratory allergy to peach leaves and lipidâ€ŧransfer proteins. Clinical and Experimental Allergy, 2004, 34, 291-295.	2.9	43
157	Plant nonâ€specific lipid transfer proteins as food and pollen allergens. Clinical and Experimental Allergy, 2004, 34, 1336-1341.	2.9	171
158	Prevalence of sensitization to <i>Artemisia</i> allergens Art v 1, Art v 3 and Art v 60 kDa. Crossâ€reactivity among Art v 3 and other relevant lipidâ€transfer protein allergens. Clinical and Experimental Allergy, 2004, 34, 1415-1421.	2.9	135
159	Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochemical and Biophysical Research Communications, 2004, 314, 54-62.	2.1	209
160	Analysis of genetic relationships among 22 European barley varieties based on two PCR markers. Euphytica, 2003, 129, 53-60.	1.2	4
161	Peach profilin: cloning, heterologous expression and cross-reactivity with Bet v 2. Allergy: European Journal of Allergy and Clinical Immunology, 2003, 58, 635-640.	5.7	50
162	Enhancement of tomato allergenicity after treatment with plant hormones. Allergologia Et Immunopathologia, 2003, 31, 44-46.	1.7	10

#	Article	IF	CITATIONS
163	Analysis of avocado allergen (Prs a 1) IgE-binding peptides generated by simulated gastric fluid digestion. Journal of Allergy and Clinical Immunology, 2003, 112, 1002-1007.	2.9	75
164	Len c 1, a major allergen and vicilin from lentil seeds. Journal of Allergy and Clinical Immunology, 2003, 112, 1208-1215.	2.9	95
165	Identification of IgE-binding epitopes of the major peach allergen Pru p 3. Journal of Allergy and Clinical Immunology, 2003, 112, 599-605.	2.9	120
166	Recombinant Pru p 3 and natural Pru p 3, a major peach allergen, show equivalent immunologic reactivity: A new tool for the diagnosis of fruit allergy. Journal of Allergy and Clinical Immunology, 2003, 111, 628-633.	2.9	76
167	AtFACE-2, a functional Prenylated Protein Protease from Arabidopsis thaliana Related to Mammalian Ras-converting Enzymes. Journal of Biological Chemistry, 2003, 278, 42091-42097.	3.4	46
168	Cloning and expression of biologically active Plantago lanceolata pollen allergen Pla l 1 in the yeast Pichia pastoris. Biochemical Journal, 2003, 372, 889-896.	3.7	26
169	Enhancement of tomato allergenicity after treatment with plant hormones. Allergologia Et Immunopathologia, 2003, 31, 44-46.	1.7	5
170	Patterns of Reactivity to Lipid Transfer Proteins of Plant Foods and <i>Artemisia</i> Pollen: An in vivo Study. International Archives of Allergy and Immunology, 2002, 128, 115-122.	2.1	93
171	Lipid-transfer proteins (LTPs) and asparagus allergy. Journal of Allergy and Clinical Immunology, 2002, 109, S309-S309.	2.9	0
172	Characterization of asparagus allergens: A relevant role of lipid transfer proteins. Journal of Allergy and Clinical Immunology, 2002, 110, 790-796.	2.9	49
173	Immunoassay To Quantify the Major Peach Allergen Pru p 3 in Foodstuffs. Differential Allergen Release and Stability under Physiological Conditions. Journal of Agricultural and Food Chemistry, 2002, 50, 7738-7741.	5.2	55
174	Allergy to azufaifa fruit and latex. Allergy: European Journal of Allergy and Clinical Immunology, 2002, 57, 460-461.	5.7	6
175	cDNA cloning and heterologous expression of the major allergens from peach and apple belonging to the lipidâ€transfer protein family. Clinical and Experimental Allergy, 2002, 32, 87-92.	2.9	72
176	cDNA cloning and heterologous expression of the major allergens from peach and apple belonging to the lipid-transfer protein family. Clinical and Experimental Allergy, 2002, 32, 1387-1387.	2.9	1
177	What is the role of the hevein-like domain of fruit class I chitinases in their allergenic capacity?. Clinical and Experimental Allergy, 2002, 32, 448-454.	2.9	32
178	DNA Amplification Fingerprinting Using Two Long Primers. BioTechniques, 2001, 30, 718-720.	1.8	1
179	The role of plant panallergens in sensitization to natural rubber latex. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 177-183.	2.3	20
180	The role of plant panallergens in sensitization to natural rubber latex. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 177-183.	2.3	23

#	Article	IF	CITATIONS
181	Lipidâ€ŧransfer proteins as potential plant panallergens: crossâ€reactivity among proteins of Artemisia pollen, Castanea nut and Rosaceae fruits, with different IgEâ€binding capacities. Clinical and Experimental Allergy, 2000, 30, 1403-1410.	2.9	165
182	Class I chitinases, the panallergens responsible for the latex-fruit syndrome, are induced by ethylene treatment and inactivated by heating. Journal of Allergy and Clinical Immunology, 2000, 106, 190-195.	2.9	92
183	Isolation and characterization of relevant allergens from boiled lentils. Journal of Allergy and Clinical Immunology, 2000, 106, 955-961.	2.9	90
184	Isolation and characterization of major banana allergens: identification as fruit class I chitinases. Clinical and Experimental Allergy, 1999, 29, 673-680.	2.9	89
185	Fruit allergy: plant defence proteins as novel potential panallergens. Clinical and Experimental Allergy, 1999, 29, 1158-1160.	2.9	34
186	Class I chitinases as potential panallergens involved in the latex-fruit syndrome. Journal of Allergy and Clinical Immunology, 1999, 103, 507-513.	2.9	116
187	Cross-reactions in the latex-fruit syndrome: A relevant role of chitinases but not of complex asparagine-linked glycans. Journal of Allergy and Clinical Immunology, 1999, 104, 681-687.	2.9	120
188	Class I chitinases with hevein-like domain, but not class II enzymes, are relevant chestnut and avocado allergens. Journal of Allergy and Clinical Immunology, 1998, 102, 127-133.	2.9	123
189	Alt a 1 Promotes Allergic Asthma In Vivo Through TLR4-Alveolar Macrophages. Frontiers in Immunology, 0, 13, .	4.8	0