Thomas Herrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2918531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Butyrophilins: γδT Cell Receptor Ligands, Immunomodulators and More. Frontiers in Immunology, 2022, 13, 876493.	2.2	15
2	BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells. Cell Reports, 2021, 36, 109359.	2.9	44
3	Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells. Immunotherapy Advances, 2021, 1, .	1.2	3
4	Human-like Response of Pig T Cells to Superagonistic Anti-CD28 Monoclonal Antibodies. Journal of Immunology, 2021, 207, ji2100174.	0.4	6
5	A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human l³ĺ Tâ€cells. Immunological Reviews, 2020, 298, 218-236.	2.8	20
6	Editorial: Understanding Gamma Delta T Cell Multifunctionality - Towards Immunotherapeutic Applications. Frontiers in Immunology, 2020, 11, 921.	2.2	10
7	An Update on the Molecular Basis of Phosphoantigen Recognition by VÎ ³ 9VÎ 2 T Cells. Cells, 2020, 9, 1433.	1.8	45
8	Butyrophilin-2A1 Directly Binds Germline-Encoded Regions of the Vγ9Vδ2 TCR and Is Essential for Phosphoantigen Sensing. Immunity, 2020, 52, 487-498.e6.	6.6	164
9	Alpaca (<i>Vicugna pacos</i>), the first nonprimate species with a phosphoantigen-reactive Vγ9VÎ′2 T cell subset. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6697-6707.	3.3	26
10	TCR repertoire analysis reveals phosphoantigen-induced polyclonal proliferation of Vγ9Vδ2 T cells in neonates and adults. Journal of Leukocyte Biology, 2020, 107, 1023-1032.	1.5	16
11	The Armadillo (Dasypus novemcinctus): A Witness but Not a Functional Example for the Emergence of the Butyrophilin 3/VI³9VÎ′2 System in Placental Mammals. Frontiers in Immunology, 2018, 9, 265.	2.2	12
12	Regulation of Human γδT Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters. Frontiers in Immunology, 2018, 9, 662.	2.2	18
13	Robust 8-color flow cytometry panel reveals enhanced effector function of NKG2C + CD57 + FcεRγ â~' NK cells in CMV seropositive human blood donors. Immunobiology, 2017, 222, 719-725.	0.8	4
14	Butyrophilin 3A (BTN3A, CD277)â€specific antibody 20.1 differentially activates Vγ9Vδ2 TCR clonotypes and interferes with phosphoantigen activation. European Journal of Immunology, 2017, 47, 982-992.	1.6	47
15	A Photoâ€Crosslinkable Biotin Derivative of the Phosphoantigen (<i>E</i>)â€4â€Hydroxyâ€3â€Methylbutâ€2â€ Diphosphate (HMBPP) Activates Vî³9VÎ′2 T Cells and Binds to the HMBPP Site of BTN3A1. Chemistry - A European Journal, 2017, 23, 11945-11954.	Enyl 1.7	4
16	Synergistic targeting of breast cancer stemâ€like cells by human γδT cells and CD8 ⁺ T cells. Immunology and Cell Biology, 2017, 95, 620-629.	1.0	51
17	The Forgotten: Identification and Functional Characterization of MHC Class II Molecules H2-Eb2 and RT1-Db2. Journal of Immunology, 2016, 196, 988-999.	0.4	11

#	Article	IF	CITATIONS
19	The hypervariable region 4 (HV4) and position 93 of the α chain modulate CD1dâ€glycolipid binding of iNKT TCRs. European Journal of Immunology, 2015, 45, 2122-2133.	1.6	4
20	Function and expression of CD1d and invariant natural killer T ell receptor in the cotton rat (<i>Sigmodon hispidus</i>). Immunology, 2015, 146, 618-629.	2.0	4
21	Species Specific Differences of CD1d Oligomer Loading In Vitro. PLoS ONE, 2015, 10, e0143449.	1.1	3
22	Establishment of a vascular endothelial cell-reactive type II NKT cell clone from a rat model of autoimmune vasculitis. International Immunology, 2015, 27, 105-114.	1.8	9
23	Vγ9Vδ2 TCRâ€activation by phosphorylated antigens requires butyrophilin 3 A1 <scp>(</scp> <i>BTN3A1</i> <scp>)</scp> and additional genes on human chromosome 6. European Journal of Immunology, 2014, 44, 2571-2576.	1.6	71
24	The Vγ9Vδ2 T Cell Antigen Receptor and Butyrophilin-3 A1: Models of Interaction, the Possibility of Co-Evolution, and the Case of Dendritic Epidermal T Cells. Frontiers in Immunology, 2014, 5, 648.	2.2	42
25	Vγ9 and Vδ2 T cell antigen receptor genes and butyrophilin 3 (BTN3) emerged with placental mammals and are concomitantly preserved in selected species like alpaca (Vicugna pacos). Immunogenetics, 2014, 66, 243-254.	1.2	58
26	Tandem repeats modify the structure of the canine <i><scp>CD</scp>1<scp>D</scp></i> gene. Animal Genetics, 2013, 44, 352-355.	0.6	6
27	CD8+ T cell help is required for efficient induction of EAE in Lewis rats. Journal of Neuroimmunology, 2013, 260, 17-27.	1.1	20
28	Direct identification of rat iNKT cells reveals remarkable similarities to human iNKT cells and a profound deficiency in LEW rats. European Journal of Immunology, 2013, 43, 404-415.	1.6	16
29	Prevention of Type 1 Diabetes in the Rat With an Allele-Specific Anti–T-Cell Receptor Antibody. Diabetes, 2012, 61, 1160-1168.	0.3	31
30	Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδT-cell subset. Blood, 2012, 120, 2269-2279.	0.6	443
31	Characterization of a New Mouse Model for Peripheral T Cell Lymphoma in Humans. PLoS ONE, 2011, 6, e28546.	1.1	5
32	Analysis of the Iddm14 Rat Diabetes Susceptibility Locus in Multiple Rat Strains: Identification of a Susceptibility Haplotype in the Tcrb-V13 Gene and Prevention of Diabetes by Depletion of Vbeta13+ T Cells. Clinical Immunology, 2010, 135, S116.	1.4	0
33	The endogenous danger signals HSP70 and MICA cooperate in the activation of cytotoxic effector functions of NK cells. Journal of Cellular and Molecular Medicine, 2010, 14, 992-1002.	1.6	36
34	CD1d Expression in Paneth Cells and Rat Exocrine Pancreas Revealed by Novel Monoclonal Antibodies Which Differentially Affect NKT Cell Activation. PLoS ONE, 2010, 5, e13089.	1.1	15
35	B7-H1-Deficiency Enhances the Potential of Tolerogenic Dendritic Cells by Activating CD1d-Restricted Type II NKT Cells. PLoS ONE, 2010, 5, e10800.	1.1	24
36	Reduced Expression of the Mevalonate Pathway Enzyme Farnesyl Pyrophosphate Synthase Unveils Recognition of Tumor Cells by Vγ9Vδ2 T Cells. Journal of Immunology, 2009, 182, 8118-8124.	0.4	90

#	Article	IF	CITATIONS
37	Ablation of T cell immunity differentially influences tumor risk in inbred BD rat strains. Cancer Immunology, Immunotherapy, 2009, 58, 1287-1295.	2.0	7
38	Inhibition of phosphoantigenâ€mediated γÎ^Tâ€cell proliferation by CD4 ⁺ â€fCD25 ⁺ â€fFoxP3 ⁺ regulatory T cells. Immunology, 2009, 126, 256-267.	2.0	78
39	Superantigenâ€presentation by rat major histocompatibility complex class II molecules RT1.B ^l and RT1.D ^l . Immunology, 2009, 128, e572-81.	2.0	4
40	Control of Toxoplasma gondii infection by athymic LEW-Whnrnurats. Parasite Immunology, 2008, 30, 323-333.	0.7	3
41	Structure Analysis of Bone Morphogenetic Protein-2 Type I Receptor Complexes Reveals a Mechanism of Receptor Inactivation in Juvenile Polyposis Syndrome. Journal of Biological Chemistry, 2008, 283, 5876-5887.	1.6	51
42	The Tumorigenicity of Mouse Embryonic Stem Cells and In Vitro Differentiated Neuronal Cells Is Controlled by the Recipients' Immune Response. PLoS ONE, 2008, 3, e2622.	1.1	94
43	The Heat Shock Protein HSP70 Promotes Mouse NK Cell Activity against Tumors That Express Inducible NKG2D Ligands. Journal of Immunology, 2007, 179, 5523-5533.	0.4	128
44	Monovalent antibody scFv fragments selected to modulate T-cell activation by inhibition of CD86–CD28 interaction. Protein Engineering, Design and Selection, 2007, 20, 91-98.	1.0	4
45	Enhanced Glucocorticoid Receptor Signaling in T Cells Impacts Thymocyte Apoptosis and Adaptive Immune Responses. American Journal of Pathology, 2007, 170, 1041-1053.	1.9	43
46	The Complementarity Determining Region 2 of BV8S2 (Vβ8.2) Contributes to Antigen Recognition by Rat Invariant NKT Cell TCR. Journal of Immunology, 2006, 176, 7447-7455.	0.4	34
47	Activation of Vγ9Vδ2 T Cells by NKG2D. Journal of Immunology, 2005, 175, 2144-2151.	0.4	282
48	Contrasting contributions of complementarity-determining region 2 and hypervariable region 4 of rat BV8S2+ (VA8.2) TCR to the recognition of myelin basic protein and different types of bacterial superantigens. International Immunology, 2004, 16, 655-663.	1.8	19
49	Polyinosinic-polycytidylic acid-mediated stimulation of human gammadelta T cells via CD11c+ dendritic cell-derived type I interferons. Immunology, 2004, 112, 369-377.	2.0	65
50	Modulation of experimental autoimmune encephalomyelitis by administration of cells expressing antigenic peptide covalently linked to MHC class II. Journal of Neuroimmunology, 2004, 152, 11-19.	1.1	4
51	Differential effect of acute and permanent heat shock protein 70 overexpression in tumor cells on lysability by cytotoxic T lymphocytes. Cancer Research, 2003, 63, 8212-20.	0.4	22
52	Differential modulation of CD8beta by rat gammadelta and alphabeta T cells after activation. Immunology, 2001, 104, 252-258.	2.0	6
53	Thymic development and repertoire selection: the rat perspective. Immunological Reviews, 2001, 184, 7-19.	2.8	22
54	Expression of functional CD8α β heterodimer on rat γ δT cells does not correlate with the CDR3 length of the TCRδ chain predicted for MHC class I-restricted antigen recognition. European Journal of Immunology, 2000, 30, 3562-3568.	1.6	5

#	Article	IF	CITATIONS
55	A polymorphism of the rat T-cell receptor \hat{l}^2 -chain variable gene 13 (BV13S1) correlates with the frequency of BV13S1-positive CD4 cells. Immunogenetics, 2000, 51, 296-305.	1.2	12
56	Heterogeneity of T-cell receptor usage in experimental autoimmune neuritis in the Lewis rat. Brain, 1999, 122, 523-535.	3.7	16
57	Differential CD4/CD8 subset-specific expression of highly homologous rat Tcrb-V8 family members suggests a role of CDR2 and/or CDR4 (HV4) in MHC class-specific thymic selection. International Immunology, 1999, 11, 435-444.	1.8	5
58	Different manifestations of Toxoplasma gondii infection in F344 and LEW rats. Medical Microbiology and Immunology, 1999, 187, 137-142.	2.6	24
59	Usage of v?3.3 T-cell receptor by myelin basic protein-specific encephalitogenic T-cell lines in the Lewis rat. , 1999, 58, 214-225.		10
60	Control of TCR V alpha-mediated positive repertoire selection and alloreactivity by differential J alpha usage and CDR3 alpha composition. International Immunology, 1997, 9, 1441-1452.	1.8	9
61	The canonical T cell receptor of dendritic epidermal γδT cells is highly conserved between rats and mice. European Journal of Immunology, 1996, 26, 3092-3097.	1.6	26
62	Normal clonal expansion but impaired Fasmediated cell death and anergy induction in in interleukin-2-deficient mice. European Journal of Immunology, 1995, 25, 2572-2577.	1.6	220
63	Preferential TCR V usage in rat repertoire selection: Vα8 imparts both positive thymic selection by and alloreactivity to RT1f. International Immunology, 1994, 6, 1367-1373.	1.8	21
64	Peripheral T-Cell Reactivity to Bacterial Superantigens in vivo: The Response/Anergy Paradox. Immunological Reviews, 1993, 133, 105-117.	2.8	67
65	The CD8 T cell response to staphylococcal enterotoxins. Seminars in Immunology, 1993, 5, 33-39.	2.7	30
66	In vivo responses of CD4+ and CD8+ cells to bacterial superantigens. European Journal of Immunology, 1992, 22, 1935-1938.	1.6	108
67	The viral superantigen Mls-1a induces interferon-Î ³ secretion by specifically primed CD8+ cells but fails to trigger cytotoxicity. European Journal of Immunology, 1992, 22, 2789-2793.	1.6	19
68	Human major histocompatibility complex class II-negative colon carcinoma cells present staphylococcal superantigens to cytotoxic T lymphocytes: evidence for a novel enterotoxin receptor. European Journal of Immunology, 1991, 21, 1229-1233.	1.6	49
69	High affinity IL-2 receptors on a Hodgkin's derived cell line. Leukemia Research, 1990, 14, 953-960.	0.4	10
70	The intermediate-affinity interleukin (IL) 2 receptor expressed onTheileria annulata-infected cells comprises a single IL 2-binding protein. Partial characterization of bovine IL 2 receptors. European Journal of Immunology, 1989, 19, 1339-1342.	1.6	13
71	Different staphylococcal enterotoxins bind preferentially to distinct major histocompatibility complex class ii isotypes. European Journal of Immunology, 1989, 19, 2171-2174.	1.6	124
72	The human intermediate-affinity interleukin 2 receptor consists of two distinct, partially homologous glycoproteins. European Journal of Immunology, 1988, 18, 1051-1057.	1.6	32

# ARTICLE	١٢	CITATIONS
 Demonstration of two distinct forms of released low-affinity type interleukin 2 receptors. European Journal of Immunology, 1988, 18, 1855-1858. 	1.6	35
74 The high affinity interleukin 2 receptor: Fvidence for three distinct polypeptide chains comprising the high affinity interleukin 2 receptor. Molecular Immunology, 1988, 25, 1201-1207.	1.0	23
75 The Mouse High Affinity IL 2 Receptor Complex. Immunobiology, 1987, 175, 145-158.	0.8	47
Production of Listeria-specific rat T-cell clones and role of interleukin-2 receptors in regulation of Listeria-dependent T-cell clone growth in vitro. Infection and Immunity, 1985, 47, 822-826.	1.0	10
77 Superantigens. , 0, , 614-619.		0