
Patricia Sancho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2918313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma. Gut, 2023, 72, 345-359.	6.1	15
2	Inhibition of Mitochondrial Dynamics Preferentially Targets Pancreatic Cancer Cells with Enhanced Tumorigenic and Invasive Potential. Cancers, 2021, 13, 698.	1.7	31
3	Lipid droplets as metabolic determinants for stemness and chemoresistance in cancer. World Journal of Stem Cells, 2021, 13, 1307-1317.	1.3	14
4	Glucose and Amino Acid Metabolic Dependencies Linked to Stemness and Metastasis in Different Aggressive Cancer Types. Frontiers in Pharmacology, 2021, 12, 723798.	1.6	13
5	Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells. Nature Communications, 2020, 11, 5265.	5.8	73
6	DIFFERENTIAL ACTIVATION PATTERNS OF RECEPTOR TYROSINE KINASES: NOVEL POTENTIAL TARGETS IN THE PANCREATIC CANCER STEM CELL NICHE. Pancreatology, 2020, 20, e20.	0.5	0
7	ISG15 and ISGylation is required for pancreatic cancer stem cell mitophagy and metabolic plasticity. Nature Communications, 2020, 11, 2682.	5.8	63
8	Cancer associated fibroblast FAK regulates malignant cell metabolism. Nature Communications, 2020, 11, 1290.	5.8	95
9	Molecular and Metabolic Subtypes Correspondence for Pancreatic Ductal Adenocarcinoma Classification. Journal of Clinical Medicine, 2020, 9, 4128.	1.0	22
10	Glutathione metabolism is essential for self-renewal and chemoresistance of pancreatic cancer stem cells, World Journal of Stem Cells, 2020, 12, 1410-1428.	1.3	39
11	Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Frontiers in Pharmacology, 2019, 10, 203.	1.6	110
12	Mitochondrial determinants of chemoresistance. Cancer Drug Resistance (Alhambra, Calif), 2019, 2, 634-646.	0.9	11
13	Hallmarks of cancer stem cell metabolism. British Journal of Cancer, 2016, 114, 1305-1312.	2.9	390
14	The ever-changing landscape of pancreatic cancer stem cells. Pancreatology, 2016, 16, 489-496.	0.5	27
15	More challenges ahead—metabolic heterogeneity of pancreatic cancer stem cells. Molecular and Cellular Oncology, 2016, 3, e1105353.	0.3	9
16	Studying Pancreatic Cancer Stem Cell Characteristics for Developing New Treatment Strategies. Journal of Visualized Experiments, 2015, , e52801.	0.2	17
17	Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut, 2015, 64, 1921-1935.	6.1	112
18	MYC/PGC-1α Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells. Cell Metabolism, 2015, 22, 590-605.	7.2	575

PATRICIA SANCHO

#	Article	IF	CITATIONS
19	A mesenchymalâ€like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells. International Journal of Cancer, 2015, 136, E161-72.	2.3	108
20	Nicotine Promotes Initiation and Progression of KRAS-Induced Pancreatic Cancer via Gata6-Dependent Dedifferentiation of Acinar Cells in Mice. Gastroenterology, 2014, 147, 1119-1133.e4.	0.6	89
21	The NADPH oxidase NOX4 inhibits hepatocyte proliferation and liver cancer progression. Free Radical Biology and Medicine, 2014, 69, 338-347.	1.3	78
22	TGF-beta Signaling in Cancer Treatment. Current Pharmaceutical Design, 2014, 20, 2934-2947.	0.9	155
23	Overactivation of the TGF-β pathway confers a mesenchymal-like phenotype and CXCR4-dependent migratory properties to liver tumor cells. Hepatology, 2013, 58, 2032-2044.	3.6	113
24	Metformin Targets the Metabolic Achilles Heel of Human Pancreatic Cancer Stem Cells. PLoS ONE, 2013, 8, e76518.	1.1	147
25	The Transforming Growth Factor-Beta (TGF-β) in Liver Fibrosis. , 2013, , 255-277.		1
26	Abstract C83: Nicotine triggers initiation and progression of K-Ras-driven pancreatic ductal adenocarcinoma. , 2013, , .		0
27	Protein-tyrosine Phosphatase 1B (PTP1B) Deficiency Confers Resistance to Transforming Growth Factor-β (TGF-β)-induced Suppressor Effects in Hepatocytes. Journal of Biological Chemistry, 2012, 287, 15263-15274.	1.6	25
28	Raf/MEK/ERK signaling inhibition enhances the ability of dequalinium to induce apoptosis in the human leukemic cell line K562. Experimental Biology and Medicine, 2012, 237, 933-942.	1.1	15
29	Lack of amino acids in mouse hepatocytes in culture induces the selection of preneoplastic cells. Cellular Signalling, 2012, 24, 325-332.	1.7	5
30	Sorafenib sensitizes hepatocellular carcinoma cells to physiological apoptotic stimuli. Journal of Cellular Physiology, 2012, 227, 1319-1325.	2.0	66
31	NADPH Oxidase NOX4 Mediates Stellate Cell Activation and Hepatocyte Cell Death during Liver Fibrosis Development. PLoS ONE, 2012, 7, e45285.	1.1	134
32	ROS Production Is Essential for the Apoptotic Function of E2F1 in Pheochromocytoma and Neuroblastoma Cell Lines. PLoS ONE, 2012, 7, e51544.	1.1	10
33	Dissecting the effect of targeting the epidermal growth factor receptor on TGF-β-induced-apoptosis in human hepatocellular carcinoma cells. Journal of Hepatology, 2011, 55, 351-358.	1.8	48
34	Reciprocal regulation of NADPH oxidases and the cyclooxygenase-2 pathway. Free Radical Biology and Medicine, 2011, 51, 1789-1798.	1.3	44
35	The NADPH oxidase inhibitor VAS2870 impairs cell growth and enhances TGF-β-induced apoptosis of liver tumor cells. Biochemical Pharmacology, 2011, 81, 917-924.	2.0	44
36	The tyrphostin AG1478 inhibits proliferation and induces death of liver tumor cells through EGF receptor-dependent and independent mechanisms. Biochemical Pharmacology, 2011, 82, 1583-1592.	2.0	13

PATRICIA SANCHO

#	Article	IF	CITATIONS
37	Snail1 suppresses TGF-β-induced apoptosis and is sufficient to trigger EMT in hepatocytes. Journal of Cell Science, 2010, 123, 3467-3477.	1.2	134
38	NADPH Oxidase NOX1 Controls Autocrine Growth of Liver Tumor Cells through Up-regulation of the Epidermal Growth Factor Receptor Pathway. Journal of Biological Chemistry, 2010, 285, 24815-24824.	1.6	65
39	Overactivation of the MEK/ERK Pathway in Liver Tumor Cells Confers Resistance to TGF-β–Induced Cell Death through Impairing Up-regulation of the NADPH Oxidase NOX4. Cancer Research, 2009, 69, 7595-7602.	0.4	106
40	The inhibition of the epidermal growth factor (EGF) pathway enhances TGF-Î2-induced apoptosis in rat hepatoma cells through inducing oxidative stress coincident with a change in the expression pattern of the NADPH oxidases (NOX) isoforms. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 253-263.	1.9	76
41	Role of CXCR4/SDF-1α in the migratory phenotype of hepatoma cells that have undergone epithelial–mesenchymal transition in response to the transforming growth factor-β. Cellular Signalling, 2009, 21, 1595-1606.	1.7	68
42	Caspase-independent type III programmed cell death in chronic lymphocytic leukemia: the key role of the F-actin cytoskeleton. Haematologica, 2009, 94, 507-517.	1.7	26
43	Inhibition of the EGF receptor blocks autocrine growth and increases the cytotoxic effects of doxorubicin in rat hepatoma cells. Biochemical Pharmacology, 2008, 75, 1935-1945.	2.0	38
44	Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. Journal of Hepatology, 2008, 49, 965-976.	1.8	197
45	Drp1 Mediates Caspase-Independent Type III Cell Death in Normal and Leukemic Cells. Molecular and Cellular Biology, 2007, 27, 7073-7088.	1.1	98
46	Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under different forms of oxidative stress. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 673-686.	2.2	54
47	Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell Death and Differentiation, 2005, 12, 1445-1448.	5.0	119
48	Pharmacological inhibitors of extracellular signal-regulated protein kinases attenuate the apoptotic action of cisplatin in human myeloid leukemia cells via glutathione-independent reduction in intracellular drug accumulation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1743, 269-279.	1.9	28
49	Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells. Blood, 2005, 105, 4013-4020.	0.6	91
50	12-O-Tetradecanoylphorbol-13-acetate May Both Potentiate and Decrease the Generation of Apoptosis by the Antileukemic Agent Arsenic Trioxide in Human Promonocytic Cells. Journal of Biological Chemistry, 2004, 279, 3877-3884.	1.6	44
51	The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death and Differentiation, 2003, 10, 889-898.	5.0	105
52	Differential Effects of Catalase on Apoptosis Induction in Human Promonocytic Cells. Relationships with Heat-Shock Protein Expression. Molecular Pharmacology, 2003, 63, 581-589.	1.0	30
53	Effect of Glutathione Depletion on Antitumor Drug Toxicity (Apoptosis and Necrosis) in U-937 Human Promonocytic Cells. Journal of Biological Chemistry, 2001, 276, 47107-47115.	1.6	135