Stephan Huveneers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2917790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bone Marrow Harbors a Unique Population of Dendritic Cells with the Potential to Boost Neutrophil Formation upon Exposure to Fungal Antigen. Cells, 2022, 11, 55.	1.8	3
2	Vinculin controls endothelial cell junction dynamics during vascular lumen formation. Cell Reports, 2022, 39, 110658.	2.9	20
3	Endothelial Barrier Function and Leukocyte Transmigration in Atherosclerosis. Biomedicines, 2021, 9, 328.	1.4	54
4	A junctional PACSIN2/EHD4/MICAL-L1 complex coordinates VE-cadherin trafficking for endothelial migration and angiogenesis. Nature Communications, 2021, 12, 2610.	5.8	23
5	Endothelial Focal Adhesions Are Functional Obstacles for Leukocytes During Basolateral Crawling. Frontiers in Immunology, 2021, 12, 667213.	2.2	6
6	Force-induced changes of $\hat{l}\pm$ -catenin conformation stabilize vascular junctions independently of vinculin. Journal of Cell Science, 2021, 134, .	1.2	9
7	Diverse ultrastructural landscape of atherosclerotic endothelium. Atherosclerosis, 2021, 339, 35-45.	0.4	8
8	Real-time imaging of multivesicular body–plasma membrane fusion to quantify exosome release from single cells. Nature Protocols, 2020, 15, 102-121.	5.5	84
9	Immune Checkpoint Inhibitor Therapy Aggravates T Cell–Driven Plaque Inflammation in Atherosclerosis. JACC: CardioOncology, 2020, 2, 599-610.	1.7	69
10	Microembolus clearance through angiophagy is an auxiliary mechanism preserving tissue perfusion in the rat brain. Acta Neuropathologica Communications, 2020, 8, 195.	2.4	13
11	The MARCH6-SQLE Axis Controls Endothelial Cholesterol Homeostasis and Angiogenic Sprouting. Cell Reports, 2020, 32, 107944.	2.9	11
12	Antibody-Mediated Inhibition of CTLA4 Aggravates Atherosclerotic Plaque Inflammation and Progression in Hyperlipidemic Mice. Cells, 2020, 9, 1987.	1.8	43
13	Editorial: Endothelial Dynamics in Health and Disease. Frontiers in Physiology, 2020, 11, 611117.	1.3	0
14	Long non-coding RNA LASSIE regulates shear stress sensing and endothelial barrier function. Communications Biology, 2020, 3, 265.	2.0	32
15	Cell-cell junctions as sensors and transducers of mechanical forces. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183316.	1.4	92
16	Bosutinib prevents vascular leakage by reducing focal adhesion turnover and reinforcing junctional integrity. Journal of Cell Science, 2020, 133, .	1.2	20
17	Hematopoietic stem and progenitor cells use podosomes to transcellularly cross the bone marrow endothelium. Haematologica, 2020, 105, 2746-2756.	1.7	12
18	DLC1 is a direct target of activated YAP/TAZ that drives collective migration and sprouting angiogenesis. Journal of Cell Science, 2020, 133, .	1.2	23

STEPHAN HUVENEERS

#	Article	IF	CITATIONS
19	Endothelial YAP/TAZ Signaling in Angiogenesis and Tumor Vasculature. Frontiers in Oncology, 2020, 10, 612802.	1.3	31
20	Nanoparticle-Aided Characterization of Arterial Endothelial Architecture during Atherosclerosis Progression and Metabolic Therapy. ACS Nano, 2019, 13, 13759-13774.	7.3	70
21	Nuclear shape, protrusive behaviour and in vivo retention of human bone marrow mesenchymal stromal cells is controlled by Lamin-A/C expression. Scientific Reports, 2019, 9, 14401.	1.6	16
22	Opening the vascular gate. Nature Nanotechnology, 2019, 14, 195-196.	15.6	4
23	CXCR4, but not CXCR3, drives CD8 ⁺ Tâ€cell entry into and migration through the murine bone marrow. European Journal of Immunology, 2019, 49, 576-589.	1.6	44
24	Junction Mapper is a novel computer vision tool to decipher cell–cell contact phenotypes. ELife, 2019, 8, .	2.8	16
25	Interferon-Gamma Impairs Maintenance and Alters Hematopoietic Support of Bone Marrow Mesenchymal Stromal Cells. Stem Cells and Development, 2018, 27, 579-589.	1.1	24
26	Sensing of Cytoskeletal Forces by Asymmetric Adherens Junctions. Trends in Cell Biology, 2018, 28, 328-341.	3.6	43
27	Endothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility. Nature Communications, 2018, 9, 4826.	5.8	53
28	Stiffness-Induced Endothelial DLC-1 Expression Forces Leukocyte Spreading through Stabilization of the ICAM-1 Adhesome. Cell Reports, 2018, 24, 3115-3124.	2.9	31
29	Nuclear Receptor Nur77 Limits the Macrophage Inflammatory Response through Transcriptional Reprogramming of Mitochondrial Metabolism. Cell Reports, 2018, 24, 2127-2140.e7.	2.9	110
30	Cell–cell junctional mechanotransduction in endothelial remodeling. Cellular and Molecular Life Sciences, 2017, 74, 279-292.	2.4	137
31	The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions. Nature Communications, 2016, 7, 12210.	5.8	40
32	F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling. Nature Communications, 2016, 7, 10493.	5.8	113
33	Interferon-Gamma Impairs Expansion and Hematopoietic Support of Bone Marrow Mesenchymal Stromal Cells. Blood, 2016, 128, 3884-3884.	0.6	1
34	VASP, zyxin and TES are tension-dependent members of Focal Adherens Junctions independent of the α-catenin-vinculin module. Scientific Reports, 2015, 5, 17225.	1.6	56
35	Endothelial Alpha-Parvin Controls Integrity of Developing Vasculature and Is Required for Maintenance of Cell–Cell Junctions. Circulation Research, 2015, 117, 29-40.	2.0	44
36	Between Rho(k) and a Hard Place. Circulation Research, 2015, 116, 895-908.	2.0	148

STEPHAN HUVENEERS

#	Article	IF	CITATIONS
37	A local VE-cadherin/Trio-based signaling complex stabilizes endothelial junctions through Rac1. Journal of Cell Science, 2015, 128, 3041-54.	1.2	82
38	Deficiency of Nuclear Receptor Nur77 Aggravates Mouse Experimental Colitis by Increased NFκB Activity in Macrophages. PLoS ONE, 2015, 10, e0133598.	1.1	60
39	A local VE-cadherin and Trio-based signaling complex stabilizes endothelial junctions through Rac1. Development (Cambridge), 2015, 142, e1.2-e1.2.	1.2	0
40	Rho GAPs and GEFs. Cell Adhesion and Migration, 2014, 8, 108-124.	1.1	70
41	F-Actin–Anchored Focal Adhesions Distinguish Endothelial Phenotypes of Human Arteries and Veins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2059-2067.	1.1	49
42	Limited Role of Nuclear Receptor Nur77 in Escherichia coli-Induced Peritonitis. Infection and Immunity, 2014, 82, 253-264.	1.0	18
43	Mechanosensitive systems at the cadherin–F-actin interface. Journal of Cell Science, 2013, 126, 403-413.	1.2	194
44	Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. Journal of Cell Biology, 2012, 196, 641-652.	2.3	411
45	Vinculin-dependent Cadherin mechanosensing regulates efficient epithelial barrier formation. Biology Open, 2012, 1, 1128-1140.	0.6	102
46	Effective Treatment of Edema and Endothelial Barrier Dysfunction With Imatinib. Circulation, 2012, 126, 2728-2738.	1.6	147
47	Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. Journal of Experimental Medicine, 2012, 209, i3-i3.	4.2	1
48	Epac1 and PDZ-GEF cooperate in Rap1 mediated endothelial junction control. Cellular Signalling, 2011, 23, 2056-2064.	1.7	64
49	The Interaction of Src Kinase with β3 Integrin Tails: A Potential Therapeutic Target in Thrombosis and Cancer. Scientific World Journal, The, 2010, 10, 1100-1106.	0.8	17
50	Cross-Talk between Integrins and Oncogenes Modulates Chemosensitivity. Molecular Pharmacology, 2009, 75, 947-955.	1.0	21
51	Adhesion signaling – crosstalk between integrins, Src and Rho. Journal of Cell Science, 2009, 122, 1059-1069.	1.2	712
52	Binding of soluble fibronectin to integrin α5β1 – link to focal adhesion redistribution and contractile shape. Journal of Cell Science, 2008, 121, 2452-2462.	1.2	123
53	Integrins Uncouple Src-induced Morphological and Oncogenic Transformation. Journal of Biological Chemistry, 2008, 283, 13243-13251.	1.6	28
54	Integrin αvβ3 Controls Activity and Oncogenic Potential of Primed c-Src. Cancer Research, 2007, 67, 2693-2700.	0.4	52

STEPHAN HUVENEERS

#	Article	IF	CITATIONS
55	Integrins: Signaling, disease, and therapy. International Journal of Radiation Biology, 2007, 83, 743-751.	1.0	101
56	The regulation of MacMARCKS expression by integrin β3. Experimental Cell Research, 2007, 313, 1260-1269.	1.2	5
57	Integrins control motile strategy through a Rho–cofilin pathway. Journal of Cell Biology, 2005, 169, 515-526.	2.3	175
58	Correction: Integrins control motile strategy through a Rho–cofilin pathway. Journal of Cell Biology, 2005, 170, 497-497.	2.3	0
59	The Rac Exchange Factor Tiam1 Is Required for the Establishment and Maintenance of Cadherin-based Adhesions. Journal of Biological Chemistry, 2004, 279, 30092-30098.	1.6	122
60	Maturation ofPichia pastoris-derived recombinant pro-Der p 1 induced by deglycosylation and by the natural cysteine protease Der p 1 from house dust mite. FEBS Journal, 2002, 269, 671-679.	0.2	38