

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2917633/publications.pdf Version: 2024-02-01

Kui Vu

#	Article	IF	CITATIONS
1	Hierarchical NiCo ₂ S ₄ @NiFe LDH Heterostructures Supported on Nickel Foam for Enhanced Overall-Water-Splitting Activity. ACS Applied Materials & Interfaces, 2017, 9, 15364-15372.	8.0	468
2	Interface engineering: The Ni(OH) 2 /MoS 2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy, 2017, 37, 74-80.	16.0	436
3	NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm, 2013, 15, 7649.	2.6	285
4	Mutually beneficial Co ₃ O ₄ @MoS ₂ heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting. Journal of Materials Chemistry A, 2018, 6, 2067-2072.	10.3	178
5	Unraveling the Charge Storage Mechanism of Ti ₃ C ₂ T <i>_{<i>x</i>}</i> MXene Electrode in Acidic Electrolyte. ACS Energy Letters, 2020, 5, 2873-2880.	17.4	129
6	The mechanism of hydrogen adsorption on transition metal dichalcogenides as hydrogen evolution reaction catalyst. Physical Chemistry Chemical Physics, 2017, 19, 10125-10132.	2.8	126
7	Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence-state doping. Nano Energy, 2018, 53, 144-151.	16.0	114
8	Electrochemical study of pseudocapacitive behavior of Ti3C2Tx MXene material in aqueous electrolytes. Energy Storage Materials, 2019, 18, 456-461.	18.0	111
9	Synergistic effect of two actions sites on cobalt oxides towards electrochemical water-oxidation. Nano Energy, 2017, 42, 98-105.	16.0	101
10	Nickel Sulfide Nanoparticles Synthesized by Microwave-assisted Method as Promising Supercapacitor Electrodes: An Experimental and Computational Study. Electrochimica Acta, 2015, 182, 361-367.	5.2	99
11	Intercalation of Glucose in NiMn-Layered Double Hydroxide Nanosheets: an Effective Path Way towards Battery-type Electrodes with Enhanced Performance. Electrochimica Acta, 2016, 216, 35-43.	5.2	98
12	Rapid microwave-assisted synthesis NiMoO4·H2O nanoclusters for supercapacitors. Materials Letters, 2013, 108, 164-167.	2.6	89
13	Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide. Physical Chemistry Chemical Physics, 2014, 16, 11031.	2.8	87
14	Metallic Sandwiched-Aerogel Hybrids Enabling Flexible and Stretchable Intelligent Sensor. Nano Letters, 2020, 20, 3449-3458.	9.1	87
15	MXenes as High-Rate Electrodes for Energy Storage. Trends in Chemistry, 2020, 2, 654-664.	8.5	81
16	Different charge-storage mechanisms in disulfide vanadium and vanadium carbide monolayer. Journal of Materials Chemistry A, 2015, 3, 9909-9914.	10.3	76
17	Charge Storage Mechanisms of Single-Layer Graphene in Ionic Liquid. Journal of the American Chemical Society, 2019, 141, 16559-16563.	13.7	67
18	Probing the electrochemical capacitance of MXene nanosheets for high-performance pseudocapacitors. Physical Chemistry Chemical Physics, 2016, 18, 4460-4467.	2.8	65

Kui Xu

#	Article	IF	CITATIONS
19	Charging/Discharging Dynamics in Two-Dimensional Titanium Carbide (MXene) Slit Nanopore: Insights from molecular dynamic study. Electrochimica Acta, 2016, 196, 75-83.	5.2	59
20	Enhanced electrochemical performance by facile oxygen vacancies from lower valence-state doping for ramsdellite-MnO ₂ . Journal of Materials Chemistry A, 2015, 3, 12461-12467.	10.3	54
21	Activation Mechanism Study of Dandelion-Like Co ₉ S ₈ Nanotubes in Supercapacitors. Journal of the Electrochemical Society, 2014, 161, A996-A1000.	2.9	53
22	Fire-safe, mechanically strong and tough thermoplastic Polyurethane/MXene nanocomposites with exceptional smoke suppression. Materials Today Physics, 2022, 22, 100607.	6.0	52
23	Electrochemical double layer near polar reduced graphene oxide electrode: Insights from molecular dynamic study. Electrochimica Acta, 2015, 166, 142-149.	5.2	51
24	Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Twoâ€Dimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study. ChemSusChem, 2018, 11, 1892-1899.	6.8	50
25	Computational Insights into Charge Storage Mechanisms of Supercapacitors. Energy and Environmental Materials, 2020, 3, 235-246.	12.8	49
26	Stretchable and Ultrasensitive Intelligent Sensors for Wireless Human–Machine Manipulation. Advanced Functional Materials, 2021, 31, 2009466.	14.9	41
27	Commensurate lattice constant dependent thermal conductivity of misoriented bilayer graphene. Carbon, 2018, 138, 451-457.	10.3	38
28	Unraveling the different charge storage mechanism in T and H phases of MoS2. Electrochimica Acta, 2016, 217, 1-8.	5.2	37
29	Effects of functional groups and anion size on the charging mechanisms in layered electrode materials. Energy Storage Materials, 2020, 33, 460-469.	18.0	36
30	How Prussian Blue Analogues Can Be Stable in Concentrated Aqueous Electrolytes. ACS Energy Letters, 2022, 7, 1672-1678.	17.4	32
31	Robust self-gated-carriers enabling highly sensitive wearable temperature sensors. Applied Physics Reviews, 2021, 8, .	11.3	31
32	Prediction of T―and Hâ€Phase Twoâ€Dimensional Transitionâ€Metal Carbides/Nitrides and Their Semiconducting–Metallic Phase Transition. ChemPhysChem, 2017, 18, 1897-1902.	2.1	30
33	Lithium diffusion in silicon and induced structure disorder: A molecular dynamics study. AIP Advances, 2013, 3, .	1.3	19
34	Promoted Electrochemical Performance of β-MnO ₂ through Surface Engineering. ACS Applied Materials & Interfaces, 2017, 9, 15176-15181.	8.0	18
35	Kust-I: a high-performance two-dimensional graphene-based material for seawater desalination. Journal of Materials Chemistry A, 2021, 9, 21158-21166.	10.3	18
36	Electric field induced orientation-selective unzipping of zigzag carbon nanotubes upon oxidation. Physical Chemistry Chemical Physics, 2013, 15, 6431.	2.8	17

Kui Xu

#	Article	IF	CITATIONS
37	Synthesis of 2D/3D carbon hybrids by heterogeneous space-confined effect for electrochemical energy storage. Journal of Materials Chemistry A, 2017, 5, 19175-19183.	10.3	15
38	A Survey of Artificial Intelligence Techniques Applied in Energy Storage Materials R&D. Frontiers in Energy Research, 2020, 8, .	2.3	15
39	Robust interphase on both anode and cathode enables stable aqueous lithium-ion battery with coulombic efficiency exceeding 99%. Energy Storage Materials, 2022, 46, 577-582.	18.0	14
40	The effective adsorption and decomposition of N ₂ O on Al-decorated graphene oxide under electric field. RSC Advances, 2015, 5, 18761-18766.	3.6	12
41	Ultrafast Microwave Polarizing Electrons to Form Vertically Aligned Metal Hybrids as Lithiophilic Buffer for Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 16594-16601.	8.0	9
42	Achieving ultrahigh electrochemical performance by surface design and nanoconfined water manipulation. National Science Review, 2022, 9, .	9.5	9
43	Development Status and Prospects of Artificial Intelligence in the Field of Energy Conversion Materials. Frontiers in Energy Research, 2020, 8, .	2.3	7
44	Light-Controlled Reconfigurable Optical Synapse Based on Carbon Nanotubes/2D Perovskite Heterostructure for Image Recognition. ACS Applied Materials & Interfaces, 2022, 14, 28221-28229.	8.0	6
45	Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Twoâ€Dimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study. ChemSusChem, 2018, 11, 1889-1889.	6.8	3
46	Achieving Electronic Engineering of Vanadium Oxide-Based 3D Lithiophilic Sandwiched-Aerogel Framework for Ultrastable Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 33306-33314.	8.0	3
47	Comment to the letter to the editor from Costentin etÂal. Entitled "Ohmic drop correction in electrochemical techniques. Multiple potential step chrono-amperometry at the test bench― Energy Storage Materials, 2020, 24, 4-5.	18.0	1
48	Stepped Porous Carbonâ€Multilayer Graphene@Fe ₃ C/Fe ₃ N Membrane to Inhibit the Polysulfides Shuttle for Highâ€Performance Lithium–Sulfur Batteries. Advanced Sustainable Systems, 2022, 6, .	5.3	1
49	The application of genetic algorithm for lattice matching of composite structure. , 2013, , .		0