Isabel pastoriza Santos

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2917631/isabel-pastoriza-santos-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

19,643 69 184 139 h-index g-index papers citations 6.77 196 21,757 9.5 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
184	Polyallylamine assisted synthesis of 3D branched AuNPs with plasmon tunability in the vis-NIR region as refractive index sensitivity probes <i>Journal of Colloid and Interface Science</i> , 2022 , 611, 695-70	5 ^{9.3}	O
183	Multiple SERS Detection of Phenol Derivatives in Tap Water. <i>Proceedings (mdpi)</i> , 2021 , 70, 88	0.3	2
182	Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties and Application in Light-Emitting Diodes. <i>Advanced Materials</i> , 2021 , e2107105	24	23
181	Prospects and applications of synergistic noble metal nanoparticle-bacterial hybrid systems. <i>Nanoscale</i> , 2021 , 13, 18054-18069	7.7	0
180	Dimensionality Control of Inorganic and Hybrid Perovskite Nanocrystals by Reaction Temperature: From No-Confinement to 3D and 1D Quantum Confinement. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26677-26684	16.4	7
179	Advances in Plasmonic Sensing at the NIR-A Review. Sensors, 2021 , 21,	3.8	10
178	Structure and Formation Kinetics of Millimeter-Size Single Domain Supercrystals. <i>Advanced Functional Materials</i> , 2021 , 31, 2101869	15.6	3
177	Plasmonic MOF Thin Films with Raman Internal Standard for Fast and Ultrasensitive SERS Detection of Chemical Warfare Agents in Ambient Air. <i>ACS Sensors</i> , 2021 , 6, 2241-2251	9.2	14
176	Discrete metal nanoparticles with plasmonic chirality. <i>Chemical Society Reviews</i> , 2021 , 50, 3738-3754	58.5	26
175	Effect of Gold Nanoparticles on Transport Properties of the Protic Ionic Liquid Propylammonium Nitrate. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 3028-3037	2.8	0
174	Plasmonic Au@Ag@mSiO Nanorattles for In Situ Imaging of Bacterial Metabolism by Surface-Enhanced Raman Scattering Spectroscopy <i>ACS Applied Materials & Description</i> 13, 61587-61597	9.5	2
173	Programmable Modular Assembly of Functional Proteins on Raman-Encoded Zeolitic Imidazolate Framework-8 (ZIF-8) Nanoparticles as SERS Tags. <i>Chemistry of Materials</i> , 2020 , 32, 5739-5749	9.6	17
172	The versatility of Fe(II) in the synthesis of uniform citrate-stabilized plasmonic nanoparticles with tunable size at room temperature. <i>Nano Research</i> , 2020 , 13, 2351-2355	10	4
171	Ultrasensitive inkjet-printed based SERS sensor combining a high-performance gold nanosphere ink and hydrophobic paper. <i>Sensors and Actuators B: Chemical</i> , 2020 , 320, 128412	8.5	16
170	PdAu Heteropentamers: Selective Growth of Au on Pd Tetrahedral Nanoparticles with Enhanced Electrocatalytic Activity. <i>Crystal Growth and Design</i> , 2020 , 20, 5863-5867	3.5	5
169	Recent Progress in Surface-Enhanced Raman Scattering for the Detection of Chemical Contaminants in Water. <i>Frontiers in Chemistry</i> , 2020 , 8, 478	5	25
168	SERS-Based Molecularly Imprinted Plasmonic Sensor for Highly Sensitive PAH Detection. <i>ACS Sensors</i> , 2020 , 5, 693-702	9.2	30

(2017-2020)

167	Pd nanoparticles as a plasmonic material: synthesis, optical properties and applications. <i>Nanoscale</i> , 2020 , 12, 23424-23443	7.7	18
166	An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells. <i>ACS Nano</i> , 2020 , 14, 14655-14664	16.7	6
165	Integrating Plasmonic Supercrystals in Microfluidics for Ultrasensitive, Label-Free, and Selective Surface-Enhanced Raman Spectroscopy Detection. <i>ACS Applied Materials & Description (Control of the Control of the Co</i>	5587-46	5564
164	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117	16.7	1000
163	Plasmonic Supercrystals. Accounts of Chemical Research, 2019, 52, 1855-1864	24.3	42
162	Screen-printed GPH electrode modified with Ru nanoplates and PoPD polymer film for NADH sensing: Design and characterization. <i>Electrochimica Acta</i> , 2019 , 300, 316-323	6.7	11
161	Iron(II) as a Green Reducing Agent in Gold Nanoparticle Synthesis. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8295-8302	8.3	10
160	Highly porous palladium nanodendrites: wet-chemical synthesis, electron tomography and catalytic activity. <i>Dalton Transactions</i> , 2019 , 48, 3758-3767	4.3	12
159	Surface-enhanced Raman scattering (SERS) imaging of bioactive metabolites in mixed bacterial populations. <i>Applied Materials Today</i> , 2019 , 14, 207-215	6.6	26
158	Osteogenic effects of simvastatin-loaded mesoporous titania thin films. <i>Biomedical Materials</i> (<i>Bristol</i>), 2018 , 13, 025017	3.5	9
157	Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of Quorum Sensing. <i>Frontiers in Cellular and Infection Microbiology</i> , 2018 , 8, 143	5.9	20
156	Pillar[5]arene-stabilized Plasmonic Nanoparticles as Selective SERS Sensors. <i>Israel Journal of Chemistry</i> , 2018 , 58, 1251-1260	3.4	4
155	Light Scattering versus Plasmon Effects: Optical Transitions in Molecular Oxygen near a Metal Nanoparticle. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 15625-15634	3.8	14
154	Plasmonic polymer nanocomposites. <i>Nature Reviews Materials</i> , 2018 , 3, 375-391	73.3	117
153	Gold nanoparticles for regulation of cell function and behavior. <i>Nano Today</i> , 2017 , 13, 40-60	17.9	61
152	Screen-printed carbon electrodes doped with TiO2-Au nanocomposites with improved electrocatalytic performance. <i>Materials Today Communications</i> , 2017 , 11, 11-17	2.5	11
151	Imaging Bacterial Interspecies Chemical Interactions by Surface-Enhanced Raman Scattering. <i>ACS Nano</i> , 2017 , 11, 4631-4640	16.7	49
150	Plasmonic/magnetic nanocomposites: Gold nanorods-functionalized silica coated magnetic nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2017 , 502, 201-209	9.3	29

149	Nanoplasmonically-engineered random lasing in organic semiconductor thin films. <i>Nanoscale Horizons</i> , 2017 , 2, 261-266	10.8	10
148	Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared. <i>Nature Communications</i> , 2017 , 8, 14925	17.4	26
147	Au@Ag SERRS tags coupled to a lateral flow immunoassay for the sensitive detection of pneumolysin. <i>Nanoscale</i> , 2017 , 9, 2051-2058	7.7	67
146	Pillar[5]arene-Based Supramolecular Plasmonic Thin Films for Label-Free, Quantitative and Multiplex SERS Detection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 26372-26382	9.5	24
145	Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. <i>Nanoscale</i> , 2017 , 9, 16645-16651	7.7	67
144	Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties. <i>Nanomaterials</i> , 2017 , 7,	5.4	28
143	Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles. <i>ACS Omega</i> , 2016 , 1, 177-181	3.9	17
142	Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11453-6	16.4	75
141	Fano Interference in the Optical Absorption of an Individual Gold-Silver Nanodimer. <i>Nano Letters</i> , 2016 , 16, 6311-6316	11.5	18
140	Nanocolloids of Noble Metals 2016 , 37-73		
140	Nanocolloids of Noble Metals 2016 , 37-73 Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility. <i>Small</i> , 2016 , 12, 3935-43	11	96
	Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF	11 9.6	96 71
139	Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility. <i>Small</i> , 2016 , 12, 3935-43 Plasmonic [email@protected] Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions.		
139	Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility. <i>Small</i> , 2016 , 12, 3935-43 Plasmonic [email@rotected] Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions. <i>Chemistry of Materials</i> , 2016 , 28, 9169-9180 Sterilization Case Study 1: Effects of Different Sterilization Techniques on Gold Nanoparticles.		
139 138 137	Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility. <i>Small</i> , 2016 , 12, 3935-43 Plasmonic [email@protected] Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions. <i>Chemistry of Materials</i> , 2016 , 28, 9169-9180 Sterilization Case Study 1: Effects of Different Sterilization Techniques on Gold Nanoparticles. <i>Frontiers in Nanobiomedical Research</i> , 2016 , 77-92 Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance.	9.6	71
139 138 137	Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility. <i>Small</i> , 2016 , 12, 3935-43 Plasmonic [email[protected] Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions. <i>Chemistry of Materials</i> , 2016 , 28, 9169-9180 Sterilization Case Study 1: Effects of Different Sterilization Techniques on Gold Nanoparticles. <i>Frontiers in Nanobiomedical Research</i> , 2016 , 77-92 Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance. <i>CrystEngComm</i> , 2016 , 18, 3422-3427 Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by	9.6 3·3	71
139 138 137 136	Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility. <i>Small</i> , 2016 , 12, 3935-43 Plasmonic [email[protected] Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions. <i>Chemistry of Materials</i> , 2016 , 28, 9169-9180 Sterilization Case Study 1: Effects of Different Sterilization Techniques on Gold Nanoparticles. <i>Frontiers in Nanobiomedical Research</i> , 2016 , 77-92 Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance. <i>CrystEngComm</i> , 2016 , 18, 3422-3427 Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. <i>Nature Materials</i> , 2016 , 15, 1203-1211	9.6 3·3 27	71 23 222

(2013-2015)

131	Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. <i>RSC Advances</i> , 2015 , 5, 29076-29097	3.7	163
130	Gold Nanorod-pNIPAM Hybrids with Reversible Plasmon Coupling: Synthesis, Modeling, and SERS Properties. <i>ACS Applied Materials & Discrete Series</i> , 2015, 7, 12530-8	9.5	87
129	Au@pNIPAM SERRS Tags for Multiplex Immunophenotyping Cellular Receptors and Imaging Tumor Cells. <i>Small</i> , 2015 , 11, 4149-57	11	57
128	Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. <i>CrystEngComm</i> , 2015 , 17, 3727-3762	3.3	100
127	Gold Nanooctahedra with Tunable Size and Microfluidic-Induced 3D Assembly for Highly Uniform SERS-Active Supercrystals. <i>Chemistry of Materials</i> , 2015 , 27, 8310-8317	9.6	75
126	Gold nanoparticle-loaded filter paper: a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. <i>Chemical Communications</i> , 2015 , 51, 4572-5	5.8	154
125	Enhanced electrochemical sensing of polyphenols by an oxygen-mediated surface. <i>RSC Advances</i> , 2015 , 5, 5024-5031	3.7	22
124	Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 230-8	6.4	74
123	Bioimaging: Au@pNIPAM SERRS Tags for Multiplex Immunophenotyping Cellular Receptors and Imaging Tumor Cells (Small 33/2015). <i>Small</i> , 2015 , 11, 4220-4220	11	1
122	Effect of the cross-linking density on the thermoresponsive behavior of hollow PNIPAM microgels. <i>Langmuir</i> , 2015 , 31, 1142-9	4	36
121	Nickel nanoparticle-doped paper as a bioactive scaffold for targeted and robust immobilization of functional proteins. <i>ACS Nano</i> , 2014 , 8, 6221-31	16.7	28
120	Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection. <i>RSC Advances</i> , 2014 , 4, 3690-3698	3.7	70
119	Inactivation and adsorption of human carbonic anhydrase II by nanoparticles. <i>Langmuir</i> , 2014 , 30, 9448-	·5 . 6	15
118	Metal nanoparticles and supramolecular macrocycles: a tale of synergy. <i>Chemistry - A European Journal</i> , 2014 , 20, 10874-83	4.8	108
117	Nontoxic impact of PEG-coated gold nanospheres on functional pulmonary surfactant-secreting alveolar type II cells. <i>Nanotoxicology</i> , 2014 , 8, 813-23	5.3	19
116	Pillar[5]arene-mediated synthesis of gold nanoparticles: size control and sensing capabilities. <i>Chemistry - A European Journal</i> , 2014 , 20, 8404-9	4.8	37
115	Nanoplasmonic Enhancement of the Emission of Semiconductor Polymer Composites. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 16577-16583	3.8	18
114	Reliable methods for silica coating of Au nanoparticles. <i>Methods in Molecular Biology</i> , 2013 , 1025, 75-93	3 1.4	7

113	Multifunctionality in metal@microgel colloidal nanocomposites. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 20-26	13	61
112	Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. <i>Langmuir</i> , 2013 , 29, 15076-82	4	255
111	All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 k based on Er(3+) emission and blackbody radiation. <i>Advanced Materials</i> , 2013 , 25, 4868-74	24	219
110	Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis. <i>Nanoscale</i> , 2013 , 5, 4776-84	7.7	46
109	Optical response of individual Au-Ag@SiO[heterodimers. ACS Nano, 2013, 7, 2522-31	16.7	77
108	Au@Ag Nanoparticles: Halides Stabilize {100} Facets. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2209	9 <i>6</i> 2 7 16	126
107	Shape-Templated Growth of [email[protected] Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 2474-2479	3.8	25
106	Growth and branching of gold nanoparticles through mesoporous silica thin films. <i>Nanoscale</i> , 2012 , 4, 931-9	7.7	33
105	Static and Dynamic Plasmon-Enhanced Light Scattering from Dispersions of Polymer-Grafted Silver Nanoprisms in the Bulk and Near Solid Surfaces. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 3888-3896	3.8	14
104	Tailoring the properties of grafted silver nanoprism composites. <i>Polymer</i> , 2012 , 53, 5771-5778	3.9	5
103	Seedless Synthesis of Single Crystalline Au Nanoparticles with Unusual Shapes and Tunable LSPR in the near-IR. <i>Chemistry of Materials</i> , 2012 , 24, 1393-1399	9.6	44
102	Effects of gold nanoparticles on the stability of microbubbles. <i>Langmuir</i> , 2012 , 28, 13808-15	4	34
101	Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study. <i>Nano Letters</i> , 2012 , 12, 4172-80	11.5	120
100	A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes. <i>Soft Matter</i> , 2012 , 8, 4165-4170	3.6	40
99	Colloidal synthesis of gold semishells. <i>ChemistryOpen</i> , 2012 , 1, 90-5	2.3	14
98	Protein/Polymer-Based Dual-Responsive Gold Nanoparticles with pH-Dependent Thermal Sensitivity. <i>Advanced Functional Materials</i> , 2012 , 22, 1436-1444	15.6	97
97	Spiked gold beads as substrates for single-particle SERS. <i>ChemPhysChem</i> , 2012 , 13, 2561-5	3.2	53
96	Overgrowth and Crystalline Structure of Gold Nanorods. <i>Microscopy and Microanalysis</i> , 2012 , 18, 67-68	0.5	1

(2010-2011)

95	Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric Tg depression. <i>Soft Matter</i> , 2011 , 7, 3607	3.6	84
94	Photoluminescence of Individual Au/CdSe Nanocrystal Complexes with Variable Interparticle Distances. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2466-2471	6.4	45
93	Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars. <i>EPJ Applied Physics</i> , 2011 , 54, 33512	1.1	26
92	Chemical solution approaches to YBa2Cu3O7_delta-Au nanocomposite superconducting thin films. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 3245-55	1.3	15
91	Flow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles. <i>ACS Nano</i> , 2011 , 5, 4935-44	16.7	29
90	Nanostars shine bright for you: Colloidal synthesis, properties and applications of branched metallic nanoparticles. <i>Current Opinion in Colloid and Interface Science</i> , 2011 , 16, 118-127	7.6	319
89	Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses. <i>ACS Nano</i> , 2011 , 5, 5823-9	16.7	55
88	Acoustic vibrations of metal-dielectric core-shell nanoparticles. <i>Nano Letters</i> , 2011 , 11, 3016-21	11.5	42
87	Growth of pentatwinned gold nanorods into truncated decahedra. <i>Nanoscale</i> , 2010 , 2, 2377-83	7.7	52
86	Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms. <i>Nano Letters</i> , 2010 , 10, 902-7	11.5	93
85	Symmetry Cancellations in the Quadratic Hyperpolarizability of Non-Centrosymmetric Gold Decahedra. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 874-880	6.4	18
84	Growth of Sharp Tips on Gold Nanowires Leads to Increased Surface-Enhanced Raman Scattering Activity. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 24-7	6.4	60
83	Tuning size and sensing properties in colloidal gold nanostars. <i>Langmuir</i> , 2010 , 26, 14943-50	4	378
82	Synthetic Routes and Plasmonic Properties of Noble Metal Nanoplates. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 4288-4297	2.3	60
81	Rapid epitaxial growth of Ag on Au nanoparticles: from Au nanorods to core-shell Au@Ag octahedrons. <i>Chemistry - A European Journal</i> , 2010 , 16, 5558-63	4.8	79
80	Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection. <i>Chemistry - A European Journal</i> , 2010 , 16, 9462-7	4.8	72
79	The Crystalline Structure of Gold Nanorods Revisited: Evidence for Higher-Index Lateral Facets. <i>Angewandte Chemie</i> , 2010 , 122, 9587-9590	3.6	22
78	The crystalline structure of gold nanorods revisited: evidence for higher-index lateral facets. Angewandte Chemie - International Edition, 2010 , 49, 9397-400	16.4	131

77	Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. <i>Nano Today</i> , 2010 , 5, 21-27	17.9	96
76	Sterilization matters: consequences of different sterilization techniques on gold nanoparticles. <i>Small</i> , 2010 , 6, 89-95	11	56
75	Influence of silver nanoparticles concentration on the alpha- to beta-phase transformation and the physical properties of silver nanoparticles doped poly(vinylidene fluoride) nanocomposites. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 2910-6	1.3	38
74	N,N-Dimethylformamide as a Reaction Medium for Metal Nanoparticle Synthesis. <i>Advanced Functional Materials</i> , 2009 , 19, 679-688	15.6	314
73	Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross-linking, Overall Dimensions, and Core Growth. <i>Advanced Functional Materials</i> , 2009 , 19, 3070-3076	15.6	136
72	Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis. <i>Angewandte Chemie</i> , 2009 , 121, 144-149	3.6	26
71	Microcontainers with Fluorescent Anisotropic Zeolite L Cores and Isotropic Silica Shells. <i>Angewandte Chemie</i> , 2009 , 121, 1292-1296	3.6	11
70	Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 138-43	16.4	263
69	Microcontainers with fluorescent anisotropic zeolite L cores and isotropic silica shells. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 1266-70	16.4	42
68	Aerobic synthesis of cu nanoplates with intense plasmon resonances. <i>Small</i> , 2009 , 5, 440-3	11	140
67	Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels: temperature- and pH-tunable plasmon resonance. <i>Langmuir</i> , 2009 , 25, 3163-7	4	110
66	Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. <i>Optics Letters</i> , 2009 , 34, 1003-5	3	77
65	Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles. <i>Nano Letters</i> , 2009 , 9, 3463-9	11.5	173
64	Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18623-18631	3.8	63
63	Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. <i>Langmuir</i> , 2009 , 25, 13894-9	4	176
62	Field gradient imaging of nanoparticle systems: analysis of geometry and surface coating effects. <i>Nanotechnology</i> , 2009 , 20, 095708	3.4	7
61	Synthesis of multifunctional composite microgels via in situ Ni growth on pNIPAM-coated Au nanoparticles. <i>ACS Nano</i> , 2009 , 3, 3184-90	16.7	69
60	Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4616-8	16.4	479

(2007-2009)

59	Chemistry And Sol-Gel Approach. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2009 , 245-250	0.2	
58	Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. <i>Nature Materials</i> , 2008 , 7, 120-4	27	263
57	High-yield synthesis and optical response of gold nanostars. <i>Nanotechnology</i> , 2008 , 19, 015606	3.4	537
56	Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. <i>Langmuir</i> , 2008 , 24, 6300-6	4	155
55	Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 6708-16	3.6	35
54	Influence of the Medium Refractive Index on the Optical Properties of Single Gold Triangular Prisms on a Substrate. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 3-7	3.8	132
53	Fabrication of nano-structured gold films by electrohydrodynamic atomisation. <i>Applied Physics A: Materials Science and Processing</i> , 2008 , 91, 141-147	2.6	28
52	Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method. <i>Advanced Materials</i> , 2008 , 20, 4288-4293	24	103
51	Encapsulation and Growth of Gold Nanoparticles in Thermoresponsive Microgels. <i>Advanced Materials</i> , 2008 , 20, 1666-1670	24	234
50	Modelling the optical response of gold nanoparticles. <i>Chemical Society Reviews</i> , 2008 , 37, 1792-805	58.5	924
49	Colloidal silver nanoplates. State of the art and future challenges. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1724		341
48	Quantitative strain determination in nanoparticles using aberration-corrected HREM 2008 , 221-222		
47	Overgrowth of gold nanorods: From rods to octahedrons 2008 , 259-260		
46	Plasmonics of Gold Nanorods. Considerations for Biosensing. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2008 , 103-111	0.2	2
45	Plasmon coupling in layer-by-layer assembled gold nanorod films. <i>Langmuir</i> , 2007 , 23, 4606-11	4	108
44	Spectroscopy and high-resolution microscopy of single nanocrystals by a focused ion beam registration method. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 3517-20	16.4	50
43	Chemical sharpening of gold nanorods: the rod-to-octahedron transition. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 8983-7	16.4	117
42	Spectroscopy and High-Resolution Microscopy of Single Nanocrystals by a Focused Ion Beam Registration Method. <i>Angewandte Chemie</i> , 2007 , 119, 3587-3590	3.6	9

41	Chemical Sharpening of Gold Nanorods: The Rod-to-Octahedron Transition. <i>Angewandte Chemie</i> , 2007 , 119, 9141-9145	3.6	27
40	Environmental Optical Sensitivity of Gold Nanodecahedra. <i>Advanced Functional Materials</i> , 2007 , 17, 14	43£ †.4 5	0 99
39	Inside Front Cover: Environmental Optical Sensitivity of Gold Nanodecahedra (Adv. Funct. Mater. 9/2007). <i>Advanced Functional Materials</i> , 2007 , 17,	15.6	1
38	Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. <i>Small</i> , 2007 , 3, 1222-9	11	240
37	Mapping surface plasmons on a single metallic nanoparticle. <i>Nature Physics</i> , 2007 , 3, 348-353	16.2	818
36	Mapping Surface Plasmons on a Single Mmetallic Nanoparticle using Sub-nm Resolved EELS Spectrum-Imaging. <i>Microscopy and Microanalysis</i> , 2007 , 13,	0.5	10
35	The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13361-13366	3.8	90
34	Printing gold nanoparticles with an electrohydrodynamic direct-write device 2006 , 39, 48-53		47
33	A versatile approach for the preparation of thermosensitive PNIPAM core-shell microgels with nanoparticle cores. <i>ChemPhysChem</i> , 2006 , 7, 2298-301	3.2	129
32	Formation of Silver Nanoprisms with Surface Plasmons at Communication Wavelengths. <i>Advanced Functional Materials</i> , 2006 , 16, 766-773	15.6	220
31	Synthesis and Optical Properties of Gold Nanodecahedra with Size Control. <i>Advanced Materials</i> , 2006 , 18, 2529-2534	24	329
30	Unstable reshaping of gold nanorods prepared by a wet chemical method in the presence of silver nitrate. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 3355-9	1.3	21
29	On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 814-21	3.6	260
28	Bending contours in silver nanoprisms. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 11796-9	3.4	49
27	Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods. <i>Chemistry of Materials</i> , 2006 , 18, 2465-2467	9.6	347
26	Optically active poly(dimethylsiloxane) elastomer films through doping with gold nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 453-8	1.3	23
25	Metallodielectric hollow shells: optical and catalytic properties. <i>Chemistry - an Asian Journal</i> , 2006 , 1, 730-6	4.5	35
24	Gold nanorods: Synthesis, characterization and applications. <i>Coordination Chemistry Reviews</i> , 2005 , 249, 1870-1901	23.2	1640

Preparation of Noble Metal Colloids and Selected Structures 2005, 1-24 1 23 Tunable whispering gallery mode emission from quantum-dot-doped microspheres. Small, 2005, 1, 238-411. 82 22 Tailoring the Morphology and Assembly of Silver Nanoparticles Formed in DMF 2005, 525-550 21 1 Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles. 20 4 41 Langmuir, 2004, 20, 10268-72 Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble 19 3.4 254 Nanoparticles with CdSe Cores. Journal of Physical Chemistry B, 2004, 108, 15461-15469 Linear and Nonlinear Optical Response of Silver Nanoprisms: Local Electric Fields of Dipole and 18 3.4 69 Quadrupole Plasmon Resonances. Journal of Physical Chemistry B, 2004, 108, 8751-8755 Optical properties of metal nanoparticle coated silica spheres: a simple effective medium 3.6 17 110 approach. Physical Chemistry Chemical Physics, 2004, 6, 5056-5060 Evidence of an aggregative mechanism during the formation of silver nanowires in 16 173 N,N-dimethylformamide. Journal of Materials Chemistry, 2004, 14, 607-610 Anisotropic Silver Nanoparticles: Synthesis and Optical Properties 2003, 65-75 15 2 Biomaterials by Design: Layer-By-Layer Assembled Ion-Selective and Biocompatible Films of TiO2 15.6 140 14 Nanoshells for Neurochemical Monitoring. Advanced Functional Materials, 2002, 12, 255 Formation of PVP-Protected Metal Nanoparticles in DMF. Langmuir, 2002, 18, 2888-2894 13 4 481 Layer-by-Layer Assembled Mixed Spherical and Planar Gold Nanoparticles: Control of Interparticle 376 12 4 Interactions. *Langmuir*, **2002**, 18, 3694-3697 Synthesis of Silver Nanoprisms in DMF. Nano Letters, 2002, 2, 903-905 11 11.5 591 CoreShell Colloids and Hollow Polyelectrolyte Capsules Based on Diazoresins. Advanced Functional 10 131 Materials, 2001, 11, 122-128 CORE-SHELL NANOPARTICLES AND ASSEMBLIES THEREOF 2001, 189-237 9 25 Self-Assembly of Silver Particle Monolayers on Glass from Aq(+) Solutions in DMF. Journal of Colloid 62 9.3 and Interface Science, 2000, 221, 236-241 Binary cooperative complementary nanoscale interfacial materials. Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids. Pure and Applied Chemistry, 2.1 214 2000, 72, 83-90 One-Pot Synthesis of Ag@TiO2CoreBhell Nanoparticles and Their Layer-by-Layer Assembly. 6 299 4 Langmuir, 2000, 16, 2731-2735

5	Formation and Stabilization of Silver Nanoparticles through Reduction byN,N-Dimethylformamide. <i>Langmuir</i> , 1999 , 15, 948-951	4	459
4	Handbook of Immunological Properties of Engineered Nanomaterials		3
3	Plasmonic metal-organic frameworks. SmartMat,	22.8	7
2	Enhanced Light Absorption in All-Polymer Biomimetic Photonic Structures by Near-Zero-Index Organic Matter. <i>Advanced Functional Materials</i> ,2113039	15.6	2
1	Bolaform Surfactant-Induced Au Nanoparticle Assemblies for Reliable Solution-Based Surface-Enhanced Raman Scattering Detection. <i>Advanced Materials Technologies</i> ,2101726	6.8	