Isabel pastoriza Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2917631/publications.pdf

Version: 2024-02-01

182 23,770 75 152 papers citations h-index g-index

196 196 196 24795
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
2	Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 2005, 249, 1870-1901.	9.5	1,867
3	Modelling the optical response of gold nanoparticles. Chemical Society Reviews, 2008, 37, 1792.	18.7	1,072
4	Mapping surface plasmons on a single metallic nanoparticle. Nature Physics, 2007, 3, 348-353.	6.5	908
5	Synthesis of Silver Nanoprisms in DMF. Nano Letters, 2002, 2, 903-905.	4.5	652
6	High-yield synthesis and optical response of gold nanostars. Nanotechnology, 2008, 19, 015606.	1.3	602
7	Formation of PVP-Protected Metal Nanoparticles in DMF. Langmuir, 2002, 18, 2888-2894.	1.6	536
8	Zeptomol Detection Through Controlled Ultrasensitive Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2009, 131, 4616-4618.	6.6	520
9	Formation and Stabilization of Silver Nanoparticles through Reduction byN,N-Dimethylformamide. Langmuir, 1999, 15, 948-951.	1.6	501
10	Tuning Size and Sensing Properties in Colloidal Gold Nanostars. Langmuir, 2010, 26, 14943-14950.	1.6	447
11	Layer-by-Layer Assembled Mixed Spherical and Planar Gold Nanoparticles:Â Control of Interparticle Interactions. Langmuir, 2002, 18, 3694-3697.	1.6	404
12	Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods. Chemistry of Materials, 2006, 18, 2465-2467.	3.2	379
13	Colloidal silver nanoplates. State of the art and future challenges. Journal of Materials Chemistry, 2008, 18, 1724.	6.7	376
14	Synthesis and Optical Properties of Gold Nanodecahedra with Size Control. Advanced Materials, 2006, 18, 2529-2534.	11.1	365
15	Nanostars shine bright for you. Current Opinion in Colloid and Interface Science, 2011, 16, 118-127.	3.4	364
16	<i>N</i> , <i>N</i> àêDimethylformamide as a Reaction Medium for Metal Nanoparticle Synthesis. Advanced Functional Materials, 2009, 19, 679-688.	7.8	357
17	One-Pot Synthesis of Ag@TiO2Coreâ^'Shell Nanoparticles and Their Layer-by-Layer Assembly. Langmuir, 2000, 16, 2731-2735.	1.6	323
18	Size Tunable Au@Ag Core–Shell Nanoparticles: Synthesis and Surface-Enhanced Raman Scattering Properties. Langmuir, 2013, 29, 15076-15082.	1.6	303

#	Article	IF	Citations
19	On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Physical Chemistry Chemical Physics, 2006, 8, 814-821.	1.3	292
20	Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nature Materials, 2008, 7, 120-124.	13.3	290
21	Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nature Materials, 2016, 15, 1203-1211.	13.3	290
22	Au@pNIPAM Colloids as Molecular Traps for Surfaceâ€Enhanced, Spectroscopic, Ultraâ€Sensitive Analysis. Angewandte Chemie - International Edition, 2009, 48, 138-143.	7.2	286
23	Allâ€nâ€One Optical Heaterâ€Thermometer Nanoplatform Operative From 300 to 2000 K Based on Er ³⁺ Emission and Blackbody Radiation. Advanced Materials, 2013, 25, 4868-4874.	11.1	264
24	Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. Journal of Physical Chemistry B, 2004, 108, 15461-15469.	1.2	263
25	Nanorod-Coated PNIPAM Microgels: Thermoresponsive Optical Properties. Small, 2007, 3, 1222-1229.	5.2	250
26	Encapsulation and Growth of Gold Nanoparticles in Thermoresponsive Microgels. Advanced Materials, 2008, 20, 1666-1670.	11.1	247
27	Binary cooperative complementary nanoscale interfacial materials. Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids. Pure and Applied Chemistry, 2000, 72, 83-90.	0.9	238
28	Formation of Silver Nanoprisms with Surface Plasmons at Communication Wavelengths. Advanced Functional Materials, 2006, 16, 766-773.	7.8	235
29	Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles. Langmuir, 2009, 25, 13894-13899.	1.6	200
30	Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Advances, 2015, 5, 29076-29097.	1.7	196
31	Quantitative Determination of the Size Dependence of Surface Plasmon Resonance Damping in Single Ag@SiO ₂ Nanoparticles. Nano Letters, 2009, 9, 3463-3469.	4.5	190
32	Plasmonic polymer nanocomposites. Nature Reviews Materials, 2018, 3, 375-391.	23.3	187
33	Evidence of an aggregative mechanism during the formation of silver nanowires in N,N-dimethylformamide. Journal of Materials Chemistry, 2004, 14, 607-610.	6.7	178
34	Temperature, pH, and Ionic Strength Induced Changes of the Swelling Behavior of PNIPAMâ°'Poly(allylacetic acid) Copolymer Microgels. Langmuir, 2008, 24, 6300-6306.	1.6	173
35	Gold nanoparticle-loaded filter paper: a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. Chemical Communications, 2015, 51, 4572-4575.	2.2	170
36	Biomaterials by Design: Layer-By-Layer Assembled Ion-Selective and Biocompatible Films of TiO2 Nanoshells for Neurochemical Monitoring. Advanced Functional Materials, 2002, 12, 255.	7.8	151

#	Article	IF	Citations
37	Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Crossâ€linking, Overall Dimensions, and Core Growth. Advanced Functional Materials, 2009, 19, 3070-3076.	7.8	148
38	Aerobic Synthesis of Cu Nanoplates with Intense Plasmon Resonances. Small, 2009, 5, 440-443.	5.2	147
39	Core-Shell Colloids and Hollow Polyelectrolyte Capsules Based on Diazoresins. Advanced Functional Materials, 2001, 11, 122-128.	7.8	145
40	The Crystalline Structure of Gold Nanorods Revisited: Evidence for Higherâ€Index Lateral Facets. Angewandte Chemie - International Edition, 2010, 49, 9397-9400.	7.2	145
41	Influence of the Medium Refractive Index on the Optical Properties of Single Gold Triangular Prisms on a Substrate. Journal of Physical Chemistry C, 2008, 112, 3-7.	1.5	142
42	Encapsulation of Single Plasmonic Nanoparticles within ZIFâ€8 and SERS Analysis of the MOF Flexibility. Small, 2016, 12, 3935-3943.	5.2	142
43	A Versatile Approach for the Preparation of Thermosensitive PNIPAM Core–Shell Microgels with Nanoparticle Cores. ChemPhysChem, 2006, 7, 2298-2301.	1.0	141
44	Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study. Nano Letters, 2012, 12, 4172-4180.	4.5	139
45	Au@Ag Nanoparticles: Halides Stabilize {100} Facets. Journal of Physical Chemistry Letters, 2013, 4, 2209-2216.	2.1	138
46	Chemical Sharpening of Gold Nanorods: The Rodâ€toâ€Octahedron Transition. Angewandte Chemie - International Edition, 2007, 46, 8983-8987.	7.2	127
47	Colloidal Metalâ€Halide Perovskite Nanoplatelets: Thicknessâ€Controlled Synthesis, Properties, and Application in Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2107105.	11.1	124
48	Metal Nanoparticles and Supramolecular Macrocycles: A Tale of Synergy. Chemistry - A European Journal, 2014, 20, 10874-10883.	1.7	123
49	Plasmon Coupling in Layer-by-Layer Assembled Gold Nanorod Films. Langmuir, 2007, 23, 4606-4611.	1.6	119
50	Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method. Advanced Materials, 2008, 20, 4288-4293.	11.1	116
51	Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. Nanoscale, 2017, 9, 16645-16651.	2.8	116
52	Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach. Physical Chemistry Chemical Physics, 2004, 6, 5056-5060.	1.3	114
53	Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance. Langmuir, 2009, 25, 3163-3167.	1.6	114
54	Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm, 2015, 17, 3727-3762.	1.3	113

#	Article	IF	CITATIONS
55	Protein/Polymerâ€Based Dualâ€Responsive Gold Nanoparticles with pHâ€Dependent Thermal Sensitivity. Advanced Functional Materials, 2012, 22, 1436-1444.	7.8	111
56	Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today, 2010, 5, 21-27.	6.2	109
57	Environmental Optical Sensitivity of Gold Nanodecahedra. Advanced Functional Materials, 2007, 17, 1443-1450.	7.8	106
58	Gold Nanorod–pNIPAM Hybrids with Reversible Plasmon Coupling: Synthesis, Modeling, and SERS Properties. ACS Applied Materials & Services, 2015, 7, 12530-12538.	4.0	105
59	Two-Dimensional Quasistatic Stationary Short Range Surface Plasmons in Flat Nanoprisms. Nano Letters, 2010, 10, 902-907.	4.5	103
60	Discrete metal nanoparticles with plasmonic chirality. Chemical Society Reviews, 2021, 50, 3738-3754.	18.7	99
61	The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres. Journal of Physical Chemistry C, 2007, 111, 13361-13366.	1.5	96
62	Tunable Whispering Gallery Mode Emission from Quantum-Dot-Doped Microspheres. Small, 2005, 1, 238-241.	5.2	91
63	Au@Ag SERRS tags coupled to a lateral flow immunoassay for the sensitive detection of pneumolysin. Nanoscale, 2017, 9, 2051-2058.	2.8	91
64	Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric Tg depression. Soft Matter, 2011, 7, 3607.	1.2	89
65	Optical Response of Individual Au–Ag@SiO ₂ Heterodimers. ACS Nano, 2013, 7, 2522-2531.	7.3	86
66	Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection. RSC Advances, 2014, 4, 3690-3698.	1.7	86
67	Gold nanoparticles for regulation of cell function and behavior. Nano Today, 2017, 13, 40-60.	6.2	86
68	Gold Nanooctahedra with Tunable Size and Microfluidic-Induced 3D Assembly for Highly Uniform SERS-Active Supercrystals. Chemistry of Materials, 2015, 27, 8310-8317.	3.2	85
69	Plasmonic Au@Pd Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions. Chemistry of Materials, 2016, 28, 9169-9180.	3.2	85
70	Rapid Epitaxial Growth of Ag on Au Nanoparticles: From Au Nanorods to Core–Shell Au@Ag Octahedrons. Chemistry - A European Journal, 2010, 16, 5558-5563.	1.7	83
71	Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles. Journal of the American Chemical Society, 2016, 138, 11453-11456.	6.6	83
72	Growing Au/Ag Nanoparticles within Microgel Colloids for Improved Surfaceâ€Enhanced Raman Scattering Detection. Chemistry - A European Journal, 2010, 16, 9462-9467.	1.7	82

#	Article	IF	CITATIONS
73	Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System. Journal of Physical Chemistry Letters, 2015, 6, 230-238.	2.1	82
74	Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. Optics Letters, 2009, 34, 1003.	1.7	77
75	Synthesis of Multifunctional Composite Microgels <i>via</i> or Ni Growth on pNIPAM-Coated Au Nanoparticles. ACS Nano, 2009, 3, 3184-3190.	7.3	76
76	Growth of Sharp Tips on Gold Nanowires Leads to Increased Surface-Enhanced Raman Scattering Activity. Journal of Physical Chemistry Letters, 2010, 1, 24-27.	2.1	74
77	Linear and Nonlinear Optical Response of Silver Nanoprisms:Â Local Electric Fields of Dipole and Quadrupole Plasmon Resonances. Journal of Physical Chemistry B, 2004, 108, 8751-8755.	1.2	72
78	Au@pNIPAM SERRS Tags for Multiplex Immunophenotyping Cellular Receptors and Imaging Tumor Cells. Small, 2015, 11, 4149-4157.	5.2	72
79	Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra. Journal of Physical Chemistry C, 2009, 113, 18623-18631.	1.5	71
80	Self-Assembly of Silver Particle Monolayers on Glass from Ag+ Solutions in DMF. Journal of Colloid and Interface Science, 2000, 221, 236-241.	5.0	69
81	Plasmonic Supercrystals. Accounts of Chemical Research, 2019, 52, 1855-1864.	7.6	68
82	Dispersed and Encapsulated Gain Medium in Plasmonic Nanoparticles: a Multipronged Approach to Mitigate Optical Losses. ACS Nano, 2011, 5, 5823-5829.	7. 3	66
83	Imaging Bacterial Interspecies Chemical Interactions by Surface-Enhanced Raman Scattering. ACS Nano, 2017, 11, 4631-4640.	7.3	66
84	Sterilization Matters: Consequences of Different Sterilization Techniques on Gold Nanoparticles. Small, 2010, 6, 89-95.	5.2	65
85	Multifunctionality in metal@microgel colloidal nanocomposites. Journal of Materials Chemistry A, 2013, 1, 20-26.	5.2	65
86	SERS-Based Molecularly Imprinted Plasmonic Sensor for Highly Sensitive PAH Detection. ACS Sensors, 2020, 5, 693-702.	4.0	65
87	Synthetic Routes and Plasmonic Properties of Noble Metal Nanoplates. European Journal of Inorganic Chemistry, 2010, 2010, 4288-4297.	1.0	64
88	Plasmonic MOF Thin Films with Raman Internal Standard for Fast and Ultrasensitive SERS Detection of Chemical Warfare Agents in Ambient Air. ACS Sensors, 2021, 6, 2241-2251.	4.0	63
89	Recent Progress in Surface-Enhanced Raman Scattering for the Detection of Chemical Contaminants in Water. Frontiers in Chemistry, 2020, 8, 478.	1.8	59
90	Growth of pentatwinned gold nanorods into truncated decahedra. Nanoscale, 2010, 2, 2377.	2.8	56

#	Article	IF	Citations
91	Spiked Gold Beads as Substrates for Singleâ€Particle SERS. ChemPhysChem, 2012, 13, 2561-2565.	1.0	56
92	Pd nanoparticles as a plasmonic material: synthesis, optical properties and applications. Nanoscale, 2020, 12, 23424-23443.	2.8	55
93	Bending Contours in Silver Nanoprisms. Journal of Physical Chemistry B, 2006, 110, 11796-11799.	1.2	52
94	Spectroscopy and High-Resolution Microscopy of Single Nanocrystals by a Focused Ion Beam Registration Method. Angewandte Chemie - International Edition, 2007, 46, 3517-3520.	7.2	51
95	Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis. Nanoscale, 2013, 5, 4776.	2.8	51
96	Using Surface Enhanced Raman Scattering to Analyze the Interactions of Protein Receptors with Bacterial Quorum Sensing Modulators. ACS Nano, 2015, 9, 5567-5576.	7.3	50
97	Acoustic Vibrations of Metal-Dielectric Core–Shell Nanoparticles. Nano Letters, 2011, 11, 3016-3021.	4.5	49
98	Plasmonic metalâ€organic frameworks. SmartMat, 2021, 2, 446-465.	6.4	49
99	Dimensionality Control of Inorganic and Hybrid Perovskite Nanocrystals by Reaction Temperature: From Noâ€Confinement to 3D and 1D Quantum Confinement. Angewandte Chemie - International Edition, 2021, 60, 26677-26684.	7.2	49
100	Photoluminescence of Individual Au/CdSe Nanocrystal Complexes with Variable Interparticle Distances. Journal of Physical Chemistry Letters, 2011, 2, 2466-2471.	2.1	48
101	Printing gold nanoparticles with an electrohydrodynamic direct-write device. Gold Bulletin, 2006, 39, 48-53.	3.2	47
102	Seedless Synthesis of Single Crystalline Au Nanoparticles with Unusual Shapes and Tunable LSPR in the near-IR. Chemistry of Materials, 2012, 24, 1393-1399.	3.2	47
103	Pillar[5]areneâ€Mediated Synthesis of Gold Nanoparticles: Size Control and Sensing Capabilities. Chemistry - A European Journal, 2014, 20, 8404-8409.	1.7	46
104	Effect of the Cross-Linking Density on the Thermoresponsive Behavior of Hollow PNIPAM Microgels. Langmuir, 2015, 31, 1142-1149.	1.6	46
105	A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes. Soft Matter, 2012, 8, 4165-4170.	1.2	45
106	Microcontainers with Fluorescent Anisotropic Zeolite L Cores and Isotropic Silica Shells. Angewandte Chemie - International Edition, 2009, 48, 1266-1270.	7.2	44
107	Flexible Ureasil Hybrids with Tailored Optical Properties through Doping with Metal Nanoparticles. Langmuir, 2004, 20, 10268-10272.	1.6	42
108	Influence of Silver Nanoparticles Concentration on the $\langle i \rangle \hat{l} \pm \langle i \rangle - to \langle i \rangle \hat{l}^2 \langle j \rangle$ -Phase Transformation and the Physical Properties of Silver Nanoparticles Doped Poly(vinylidene fluoride) Nanocomposites. Journal of Nanoscience and Nanotechnology, 2009, 9, 2910-2916.	0.9	42

#	Article	IF	Citations
109	Effects of Gold Nanoparticles on the Stability of Microbubbles. Langmuir, 2012, 28, 13808-13815.	1.6	42
110	Governing the morphology of Pt–Au heteronanocrystals with improved electrocatalytic performance. Nanoscale, 2015, 7, 8739-8747.	2.8	42
111	Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties. Nanomaterials, 2017, 7, 139.	1.9	42
112	Time-Resolved Investigations of the Cooling Dynamics of Metal Nanoparticles: Impact of Environment. Journal of Physical Chemistry C, 2015, 119, 12757-12764.	1.5	41
113	Thermoresponsive core–shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics, 2008, 10, 6708.	1.3	39
114	Nickel Nanoparticle-Doped Paper as a Bioactive Scaffold for Targeted and Robust Immobilization of Functional Proteins. ACS Nano, 2014, 8, 6221-6231.	7.3	38
115	Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared. Nature Communications, 2017, 8, 14925.	5.8	38
116	Metallodielectric Hollow Shells: Optical and Catalytic Properties. Chemistry - an Asian Journal, 2006, 1, 730-736.	1.7	37
117	Growth and branching of gold nanoparticles through mesoporous silica thin films. Nanoscale, 2012, 4, 931-939.	2.8	37
118	Surface-enhanced Raman scattering (SERS) imaging of bioactive metabolites in mixed bacterial populations. Applied Materials Today, 2019, 14, 207-215.	2.3	36
119	Plasmonic/magnetic nanocomposites: Gold nanorods-functionalized silica coated magnetic nanoparticles. Journal of Colloid and Interface Science, 2017, 502, 201-209.	5.0	35
120	Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars. EPJ Applied Physics, 2011, 54, 33512.	0.3	34
121	Flow Dichroism as a Reliable Method to Measure the Hydrodynamic Aspect Ratio of Gold Nanoparticles. ACS Nano, 2011, 5, 4935-4944.	7.3	33
122	Ultrasensitive inkjet-printed based SERS sensor combining a high-performance gold nanosphere ink and hydrophobic paper. Sensors and Actuators B: Chemical, 2020, 320, 128412.	4.0	33
123	Programmable Modular Assembly of Functional Proteins on Raman-Encoded Zeolitic Imidazolate Framework-8 (ZIF-8) Nanoparticles as SERS Tags. Chemistry of Materials, 2020, 32, 5739-5749.	3.2	32
124	Shape-Templated Growth of Au@Cu Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 2474-2479.	1.5	31
125	Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance. CrystEngComm, 2016, 18, 3422-3427.	1.3	31
126	Pillar[5]arene-Based Supramolecular Plasmonic Thin Films for Label-Free, Quantitative and Multiplex SERS Detection. ACS Applied Materials & Interfaces, 2017, 9, 26372-26382.	4.0	31

#	Article	IF	Citations
127	CORE-SHELL NANOPARTICLES AND ASSEMBLIES THEREOF., 2001,, 189-237.		29
128	Fabrication of nano-structured gold films by electrohydrodynamic atomisation. Applied Physics A: Materials Science and Processing, 2008, 91, 141-147.	1.1	29
129	Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing. Frontiers in Cellular and Infection Microbiology, 2018, 8, 143.	1.8	29
130	Enhanced electrochemical sensing of polyphenols by an oxygen-mediated surface. RSC Advances, 2015, 5, 5024-5031.	1.7	28
131	Integrating Plasmonic Supercrystals in Microfluidics for Ultrasensitive, Label-Free, and Selective Surface-Enhanced Raman Spectroscopy Detection. ACS Applied Materials & Interfaces, 2020, 12, 46557-46564.	4.0	27
132	Optically Active Poly(dimethylsiloxane) Elastomer Films Through Doping with Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2006, 6, 453-458.	0.9	25
133	Highly porous palladium nanodendrites: wet-chemical synthesis, electron tomography and catalytic activity. Dalton Transactions, 2019, 48, 3758-3767.	1.6	25
134	Nontoxic impact of PEG-coated gold nanospheres on functional pulmonary surfactant-secreting alveolar type II cells. Nanotoxicology, 2014, 8, 813-823.	1.6	23
135	Advances in Plasmonic Sensing at the NIRâ€"A Review. Sensors, 2021, 21, 2111.	2.1	23
136	Unstable Reshaping of Gold Nanorods Prepared by a Wet Chemical Method in the Presence of Silver Nitrate. Journal of Nanoscience and Nanotechnology, 2006, 6, 3355-3359.	0.9	22
137	Inactivation and Adsorption of Human Carbonic Anhydrase II by Nanoparticles. Langmuir, 2014, 30, 9448-9456.	1.6	22
138	Fano Interference in the Optical Absorption of an Individual Gold–Silver Nanodimer. Nano Letters, 2016, 16, 6311-6316.	4.5	20
139	An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells. ACS Nano, 2020, 14, 14655-14664.	7.3	20
140	Symmetry Cancellations in the Quadratic Hyperpolarizability of Non-Centrosymmetric Gold Decahedra. Journal of Physical Chemistry Letters, 2010, 1, 874-880.	2.1	19
141	Nanoplasmonic Enhancement of the Emission of Semiconductor Polymer Composites. Journal of Physical Chemistry C, 2013, 117, 16577-16583.	1.5	19
142	Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles. ACS Omega, 2016, 1, 177-181.	1.6	18
143	Screen-printed GPH electrode modified with Ru nanoplates and PoPD polymer film for NADH sensing: Design and characterization. Electrochimica Acta, 2019, 300, 316-323.	2.6	18
144	Iron(II) as a Green Reducing Agent in Gold Nanoparticle Synthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 8295-8302.	3.2	18

#	Article	IF	CITATIONS
145	Chemical Solution Approaches to YBa ₃ O _{7â^Î} -Au Nanocomposite Superconducting Thin Films. Journal of Nanoscience and Nanotechnology, 2011, 11, 3245-3255.	0.9	16
146	Static and Dynamic Plasmon-Enhanced Light Scattering from Dispersions of Polymer-Grafted Silver Nanoprisms in the Bulk and Near Solid Surfaces. Journal of Physical Chemistry C, 2012, 116, 3888-3896.	1.5	16
147	Light Scattering versus Plasmon Effects: Optical Transitions in Molecular Oxygen near a Metal Nanoparticle. Journal of Physical Chemistry C, 2018, 122, 15625-15634.	1.5	16
148	Colloidal Synthesis of Gold Semishells. ChemistryOpen, 2012, 1, 90-95.	0.9	15
149	Screen-printed carbon electrodes doped with TiO2-Au nanocomposites with improved electrocatalytic performance. Materials Today Communications, 2017, 11, 11-17.	0.9	14
150	Nanoplasmonically-engineered random lasing in organic semiconductor thin films. Nanoscale Horizons, 2017, 2, 261-266.	4.1	13
151	Osteogenic effects of simvastatin-loaded mesoporous titania thin films. Biomedical Materials (Bristol), 2018, 13, 025017.	1.7	13
152	The versatility of Fe(II) in the synthesis of uniform citrate-stabilized plasmonic nanoparticles with tunable size at room temperature. Nano Research, 2020, 13, 2351-2355.	5.8	12
153	Mapping Surface Plasmons on a Single Mmetallic Nanoparticle using Sub-nm Resolved EELS Spectrum-Imaging. Microscopy and Microanalysis, 2007, 13, .	0.2	10
154	Pd–Au Heteropentamers: Selective Growth of Au on Pd Tetrahedral Nanoparticles with Enhanced Electrocatalytic Activity. Crystal Growth and Design, 2020, 20, 5863-5867.	1.4	10
155	Structure and Formation Kinetics of Millimeterâ€Size Single Domain Supercrystals. Advanced Functional Materials, 2021, 31, 2101869.	7.8	9
156	Tailoring the properties of grafted silver nanoprism composites. Polymer, 2012, 53, 5771-5778.	1.8	8
157	Enhanced Light Absorption in Allâ€Polymer Biomimetic Photonic Structures by Nearâ€Zeroâ€Index Organic Matter. Advanced Functional Materials, 2022, 32, .	7.8	8
158	Field gradient imaging of nanoparticle systems: analysis of geometry and surface coating effects. Nanotechnology, 2009, 20, 095708.	1.3	7
159	Reliable Methods for Silica Coating of Au Nanoparticles. Methods in Molecular Biology, 2013, 1025, 75-93.	0.4	7
160	Plasmonic Au@Ag@mSiO ₂ Nanorattles for In Situ Imaging of Bacterial Metabolism by Surface-Enhanced Raman Scattering Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 61587-61597.	4.0	7
161	Pillar[5]areneâ€stabilized Plasmonic Nanoparticles as Selective SERS Sensors. Israel Journal of Chemistry, 2018, 58, 1251-1260.	1.0	6
162	Prospects and applications of synergistic noble metal nanoparticle-bacterial hybrid systems. Nanoscale, 2021, 13, 18054-18069.	2.8	6

#	Article	IF	CITATIONS
163	Effect of Gold Nanoparticles on Transport Properties of the Protic Ionic Liquid Propylammonium Nitrate. Journal of Chemical & Samp; Engineering Data, 2021, 66, 3028-3037.	1.0	3
164	Plasmonics of Gold Nanorods. Considerations for Biosensing. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 103-111.	0.2	3
165	Anisotropic Silver Nanoparticles: Synthesis and Optical Properties. , 2003, , 65-75.		3
166	Polyallylamine assisted synthesis of 3D branched AuNPs with plasmon tunability in the vis-NIR region as refractive index sensitivity probes. Journal of Colloid and Interface Science, 2022, 611, 695-705.	5.0	3
167	Bioimaging: Au@pNIPAM SERRS Tags for Multiplex Immunophenotyping Cellular Receptors and Imaging Tumor Cells (Small 33/2015). Small, 2015, 11, 4220-4220.	5.2	2
168	Multiple SERS Detection of Phenol Derivatives in Tap Water. Proceedings (mdpi), 2020, 70, .	0.2	2
169	Preparation of Noble Metal Colloids and Selected Structures. , 2005, , 1-24.		1
170	Inside Front Cover: Environmental Optical Sensitivity of Gold Nanodecahedra (Adv. Funct. Mater.) Tj ETQq0 0 0 r	gBŢ ¦Over	lock 10 Tf 50
171	Overgrowth and Crystalline Structure of Gold Nanorods. Microscopy and Microanalysis, 2012, 18, 67-68.	0.2	1
172	Investigating the acoustic response of gold nanoparticle coated microbubbles. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1
173	Tailoring the Morphology and Assembly of Silver Nanoparticles Formed in DMF., 2005, , 525-550.		1
174	Bolaform Surfactantâ€Induced Au Nanoparticle Assemblies for Reliable Solutionâ€Based Surfaceâ€Enhanced Raman Scattering Detection. Advanced Materials Technologies, 2022, 7, .	3.0	1
175	Methodological Approaches for Monitoring Five Major Food Safety Hazards Affecting Food Production in the Galicia–Northern Portugal Euroregion. Foods, 2022, 11, 84.	1.9	1
176	Hyperspectral imaging of gold dimers. , 2007, , .		O
177	Interfacial Activity of Pulmonary Surfactant Combined with Gold Nanoparticles: A Promising Tool in Lung Medicine. Biophysical Journal, 2013, 104, 677a.	0.2	O
178	Nanocolloids of Noble Metals. , 2016, , 37-73.		O
179	Sterilization Case Study 1: Effects of Different Sterilization Techniques on Gold Nanoparticles. Frontiers in Nanobiomedical Research, 2016, , 77-92.	0.1	O
180	Preparation And Properties Of Flexible Nanocomposites, Obtained By A Combination Of Colloidal Chemistry And Sol-Gel Approach. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 245-250.	0.2	0

#	Article	IF	CITATIONS
181	Quantitative strain determination in nanoparticles using aberration-corrected HREM., 2008,, 221-222.		O
182	Outside Front Cover: Volume 2 Issue 4. SmartMat, 2021, 2, .	6.4	0