List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/291756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bending analysis of nanobeams based on the integral form of nonlocal elasticity using the numerical Rayleigh-Ritz technique. Journal of Strain Analysis for Engineering Design, 2023, 58, 17-25.	1.0	2
2	Thermally nonlinear generalized coupled thermo-viscoelasticity of disks: a numerical variational approach. Waves in Random and Complex Media, 2022, 32, 2796-2811.	1.6	5
3	Nonlinear Thermally Induced Vibration Analysis of Porous FGM Timoshenko Beams Embedded in an Elastic Medium. Transport in Porous Media, 2022, 142, 63-87.	1.2	6
4	Vibrations of piezoelectric nanobeams considering flexoelectricity influence: a numerical approach based on strain-driven nonlocal differential/integral models. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	0.8	2
5	An efficient numerical method to solve the problems of 2D incompressible nonlinear elasticity. Continuum Mechanics and Thermodynamics, 2022, 34, 1-21.	1.4	3
6	Dynamic Response of Rapidly Heated Rectangular Plates Made of Porous Functionally Graded Material. International Journal of Structural Stability and Dynamics, 2022, 22, .	1.5	4
7	Large deformation analysis in the context of 3D compressible nonlinear elasticity using the VDQ method. Engineering With Computers, 2021, 37, 3251-3263.	3.5	9
8	Investigating vibrations of viscoelastic fluid-conveying carbon nanotubes resting on viscoelastic foundation using a nonlocal fractional Timoshenko beam model. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2021, 235, 30-40.	0.5	1
9	Nonlinear stress-driven nonlocal formulation of Timoshenko beams made of FGMs. Continuum Mechanics and Thermodynamics, 2021, 33, 343-355.	1.4	14
10	Nonlinear bending analysis of hyperelastic Mindlin plates: a numerical approach. Acta Mechanica, 2021, 232, 741-760.	1.1	19
11	Micromorphic Continuum Theory: Finite Element Analysis of 3D Elasticity with Applications in Beam- and Plate-Type Structures. Springer Tracts in Mechanical Engineering, 2021, , 339-363.	0.1	1
12	Bending analysis of nanoscopic beams based upon the strain-driven and stress-driven integral nonlocal strain gradient theories. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	0.8	5
13	Buckling and Postbuckling of Plates Made of FC-GPL-Reinforced Porous Nanocomposite with Various Shapes and Boundary Conditions. International Journal of Structural Stability and Dynamics, 2021, 21, 2150063.	1.5	25
14	Nonlinear analysis of laminated FG-GPLRC beams resting on an elastic foundation based on the two-phase stress-driven nonlocal model. Acta Mechanica, 2021, 232, 2183-2199.	1.1	11
15	Free vibration analysis of postbuckled arbitrary-shaped FG-GPL-reinforced porous nanocomposite plates. Thin-Walled Structures, 2021, 163, 107701.	2.7	43
16	Flexoelectricity effect on the size-dependent bending of piezoelectric nanobeams resting on elastic foundation. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	8
17	A numerical study on the free vibrations of nanocomposite conical panels with variously shaped cutout. European Physical Journal Plus, 2021, 136, 1.	1.2	1
18	Geometrically nonlinear vibrations of FG-GPLRC cylindrical panels with cutout based on HSDT and mixed formulation: a novel variational approach. Acta Mechanica, 2021, 232, 3417-3439.	1.1	6

#	Article	IF	CITATIONS
19	A VDQ-transformed approach to the 3D compressible and incompressible finite hyperelasticity. European Physical Journal Plus, 2021, 136, 1.	1.2	5
20	Hybrid strain- and stress-driven integral non-local model. European Physical Journal Plus, 2021, 136, 1.	1.2	4
21	Size-dependent buckling analysis of piezoelectric nanobeams resting on elastic foundation considering flexoelectricity effect using the stress-driven nonlocal model. European Physical Journal Plus, 2021, 136, .	1.2	9
22	Studying nonlinear thermomechanical wave propagation in a viscoelastic layer based upon the Lord-Shulman theory. Mechanics of Advanced Materials and Structures, 2020, 27, 800-806.	1.5	10
23	An analytical study on wave propagation in functionally graded nano-beams/tubes based on the integral formulation of nonlocal elasticity. Waves in Random and Complex Media, 2020, 30, 562-580.	1.6	36
24	Finite element modeling of micromorphic continua in the context of three-dimensional elasticity. Continuum Mechanics and Thermodynamics, 2020, 32, 99-110.	1.4	5
25	A Numerical Investigation into the Primary Resonant Dynamics of Magneto-Electro-Thermo-Elastic Plates. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2020, 44, 571-583.	0.8	1
26	An efficient numerical approach to the micromorphic hyperelasticity. Continuum Mechanics and Thermodynamics, 2020, 32, 1011-1036.	1.4	7
27	Thermal postbuckling analysis of FG-CNTRC plates with various shapes and temperature-dependent properties using the VDQ-FEM technique. Aerospace Science and Technology, 2020, 106, 106078.	2.5	34
28	Nonlinear bending analysis of arbitrary-shaped porous nanocomposite plates using a novel numerical approach. International Journal of Non-Linear Mechanics, 2020, 126, 103556.	1.4	41
29	Nonlinear Forced Vibration Analysis of FG Cylindrical Nanopanels Based on Mindlin's Strain Gradient Theory and 3D Elasticity. International Journal of Nonlinear Sciences and Numerical Simulation, 2020, 21, 523-537.	0.4	3
30	A three-dimensional surface elastic model for vibration analysis of functionally graded arbitrary straight-sided quadrilateral nanoplates under thermal environment. Journal of Mechanics, 2020, 37, 72-99.	0.7	2
31	Free and forced vibration analysis of rectangular/circular/annular plates made of carbon fiber-carbon nanotube-polymer hybrid composites. Science and Engineering of Composite Materials, 2019, 26, 70-76.	0.6	16
32	Nonlinear vibration analysis of graphene sheets resting on Winkler–Pasternak elastic foundation using an atomistic-continuum multiscale model. Acta Mechanica, 2019, 230, 4157-4174.	1.1	7
33	A numerical approach to the elastic/plastic axisymmetric buckling analysis of circular and annular plates resting on elastic foundation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 7041-7061.	1.1	6
34	Pre- and post-buckling analysis of FG cylindrical nanoshells in thermal environment considering the surface stress effect. Materials Research Express, 2019, 6, 095067.	0.8	8
35	Vibration analysis of graphene sheets resting on Winkler/Pasternak foundation: A multiscale approach. European Physical Journal Plus, 2019, 134, 1.	1.2	8
36	Nonlinear bending and postbuckling analysis of FG nanoscale beams using the two-phase fractional nonlocal continuum mechanics. European Physical Journal Plus, 2019, 134, 1.	1.2	8

#	Article	IF	CITATIONS
37	Elastoplastic postbuckling analysis of moderately thick rectangular plates using the variational differential quadrature method. Aerospace Science and Technology, 2019, 91, 479-493.	2.5	17
38	Large deformation analysis of 2D hyperelastic bodies based on the compressible nonlinear elasticity: A numerical variational method. International Journal of Non-Linear Mechanics, 2019, 116, 39-54.	1.4	26
39	Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach. Applied Mathematics and Mechanics (English Edition), 2019, 40, 767-782.	1.9	19
40	Postbuckling analysis of functionally graded graphene platelet-reinforced polymer composite cylindrical shells using an analytical solution approach. Applied Mathematics and Mechanics (English) Tj ETQq0 0	0 1 g BT /O	ve r bock 10 Tf
41	Nonlinear bending analysis of nanoplates made of FGMs based on the most general strain gradient model and 3D elasticity theory. European Physical Journal Plus, 2019, 134, 1.	1.2	11
42	Halfâ€space contact problem considering strain gradient and surface effects: An analytical approach. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2019, 99, e201700190.	0.9	7
43	Integral and differential nonlocal micromorphic theory. Engineering Computations, 2019, 37, 566-590.	0.7	5
44	SIZE-DEPENDENT GEOMETRICALLY NONLINEAR BENDING AND POSTBUCKLING OF NANOCRYSTALLINE SILICON RECTANGULAR PLATES BASED ON MINDLIN'S STRAIN GRADIENT THEORY. International Journal for Multiscale Computational Engineering, 2019, 17, 583-606.	0.8	2
45	A VDQâ€based multifield approach to the 2D compressible nonlinear elasticity. International Journal for Numerical Methods in Engineering, 2019, 118, 345-370.	1.5	15
46	Finite element analysis of micromorphic and micropolar continua based on two-dimensional elasticity. Mathematics and Mechanics of Solids, 2019, 24, 1893-1907.	1.5	3
47	Geometrically nonlinear free vibration analysis of shear deformable magneto-electro-elastic plates considering thermal effects based on a novel variational approach. Thin-Walled Structures, 2019, 135, 12-20.	2.7	24
48	Nonlinear free vibration analysis of shell-type structures by the variational differential quadrature method in the context of six-parameter shell theory. International Journal of Mechanical Sciences, 2019, 151, 33-45.	3.6	17
49	Nonlinear Bending Analysis of Nanobeams Based on the Nonlocal Strain Gradient Model Using an Isogeometric Finite Element Approach. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2019, 43, 533-547.	1.0	15
50	Nonlinear Pull-In Instability of Strain Gradient Microplates Made of Functionally Graded Materials. International Journal of Structural Stability and Dynamics, 2019, 19, 1950007.	1.5	11
51	Nonlinear free and forced vibration analysis of Timoshenko nanobeams based on Mindlin's second strain gradient theory. European Journal of Mechanics, A/Solids, 2019, 73, 268-281.	2.1	21
52	On the Free Vibrations of Piezoelectric Carbon Nanotube-Reinforced Microbeams: A Multiscale Finite Element Approach. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2019, 43, 285-294.	0.8	12
53	Bending of Euler–Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 871-882.	1.5	52
54	Vibration analysis of FG nanobeams on the basis of fractional nonlocal model: a variational approach. Microsystem Technologies, 2018, 24, 2775-2782.	1.2	15

#	Article	lF	CITATIONS
55	Finite element analysis of vibrating micro-beams and -plates using a three-dimensional micropolar element. Thin-Walled Structures, 2018, 124, 489-500.	2.7	39
56	Bending analysis of functionally graded nanobeams based on the fractional nonlocal continuum theory by the variational Legendre spectral collocation method. Meccanica, 2018, 53, 1115-1130.	1.2	29
57	Free Vibration Analysis of Carbon Fiber-Carbon Nanotube-Polymer Matrix Composite Plates by a Finite Element-Based Multi-Scale Modeling Approach. Journal of Multiscale Modeling, 2018, 09, 1850002.	1.0	9
58	Isogeometric analysis of Mindlin nanoplates based on the integral formulation of nonlocal elasticity. Multidiscipline Modeling in Materials and Structures, 2018, 14, 810-827.	0.6	11
59	Analyzing primary resonant dynamics of functionally graded nanoplates based on a surface third-order shear deformation model. Thin-Walled Structures, 2018, 131, 487-499.	2.7	13
60	A numerical study on the buckling and vibration of nanobeams based on the strain and stress-driven nonlocal integral models. International Journal of Computational Materials Science and Engineering, 2018, 07, 1850016.	0.5	8
61	Nonlinear wave propagation analysis in Timoshenko nano-beams considering nonlocal and strain gradient effects. Meccanica, 2018, 53, 3415-3435.	1.2	21
62	Stress-driven nonlocal and strain gradient formulations of Timoshenko nanobeams. European Physical Journal Plus, 2018, 133, 1.	1.2	26
63	Nonlinear large deformation analysis of shells using the variational differential quadrature method based on the six-parameter shell theory. International Journal of Non-Linear Mechanics, 2018, 106, 130-143.	1.4	20
64	Studying buckling of composite rods made of hybrid carbon fiber/carbon nanotube reinforced polyimide using multiscale FEM. Scientia Iranica, 2018, .	0.3	3
65	Micromorphic prism element. Mathematics and Mechanics of Solids, 2017, 22, 1438-1461.	1.5	20
66	A Nonclassical Finite Element Approach for the Nonlinear Analysis of Micropolar Plates. Journal of Computational and Nonlinear Dynamics, 2017, 12, .	0.7	24
67	Multi-scale bending, buckling and vibration analyses of carbon fiber/carbon nanotube-reinforced polymer nanocomposite plates with various shapes. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 17-25.	1.3	50
68	Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	54
69	Studying linear and nonlinear vibrations of fractional viscoelastic Timoshenko micro-/nano-beams using the strain gradient theory. Nonlinear Dynamics, 2017, 87, 695-711.	2.7	31
70	Nonlinear free vibration analysis of cylindrical nanoshells based on the Ru model accounting for surface stress effect. International Journal of Mechanical Sciences, 2016, 113, 1-9.	3.6	31
71	Analytical solution approach for nonlinear buckling and postbuckling analysis of cylindrical nanoshells based on surface elasticity theory. Applied Mathematics and Mechanics (English Edition), 2016, 37, 903-918.	1.9	19
72	Micromorphic first-order shear deformable plate element. Meccanica, 2016, 51, 1797-1809.	1.2	27

#	Article	IF	CITATIONS
73	Analytical treatment of the nonlinear free vibration of cylindrical nanoshells based on a first-order shear deformable continuum model including surface influences. Acta Mechanica, 2016, 227, 1767-1781.	1.1	33
74	Postbuckling analysis of microscale beams based on a strain gradient finite element approach. Meccanica, 2016, 51, 2493-2507.	1.2	5
75	Nonlinear Bending Analysis of First-Order Shear Deformable Microscale Plates Using a Strain Gradient Quadrilateral Element. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	0.7	13
76	Size-dependent free vibration analysis of nanoshells based on the surface stress elasticity. Applied Mathematical Modelling, 2016, 40, 3128-3140.	2.2	60
77	Free vibration and postbuckling of laminated composite Timoshenko beams. Science and Engineering of Composite Materials, 2016, 23, 107-121.	0.6	0
78	A novel size-dependent microbeam element based on Mindlin's strain gradient theory. Engineering With Computers, 2016, 32, 99-108.	3.5	15
79	An efficient molecular mechanics model for the torsional buckling analysis of multi-walled silicon carbide nanotubes. EPJ Applied Physics, 2015, 70, 10401.	0.3	3
80	Rayleigh-Ritz Vibrational Analysis of Multiwalled Carbon Nanotubes Based on the Nonlocal Flügge Shell Theory. Journal of Composites, 2015, 2015, 1-11.	0.8	6
81	Studying the effects of small scale and Casimir force on the non-linear pull-in instability and vibrations of FGM microswitches under electrostatic actuation. International Journal of Non-Linear Mechanics, 2015, 77, 193-207.	1.4	27
82	A first principles study on the mechanical properties of hexagonal zinc oxide sheets. Superlattices and Microstructures, 2015, 79, 15-20.	1.4	10
83	Buckling of multi-walled silicon carbide nanotubes under axial compression via a molecular mechanics model. Applied Physics A: Materials Science and Processing, 2015, 118, 845-854.	1.1	1
84	Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory. Composite Structures, 2015, 126, 216-226.	3.1	133
85	A nonlocal plate model incorporating interatomic potentials for vibrations of graphene with arbitrary edge conditions. Current Applied Physics, 2015, 15, 1062-1069.	1.1	30
86	Triangular Mindlin microplate element. Computer Methods in Applied Mechanics and Engineering, 2015, 295, 56-76.	3.4	29
87	Prediction of torsional buckling behaviour of single-walled SiC nanotubes based on molecular mechanics. Engineering Computations, 2015, 32, 1837-1866.	0.7	5
88	Thermal Post-Buckling Analysis of Nanoscale Films Based on a Non-Classical Finite Element Approach. Journal of Thermal Stresses, 2015, 38, 651-664.	1.1	3
89	A non-classical Timoshenko beam element for the postbuckling analysis of microbeams based on Mindlin's strain gradient theory. Archive of Applied Mechanics, 2015, 85, 937-953.	1.2	18
90	Small-scale Timoshenko beam element. European Journal of Mechanics, A/Solids, 2015, 53, 19-33.	2.1	28

#	Article	IF	CITATIONS
91	Torsional buckling analysis of chiral multi-walled carbon nanotubes based on an accurate molecular mechanics model. Acta Mechanica, 2015, 226, 2955-2972.	1.1	7
92	A novel variational numerical method for analyzing the free vibration of composite conical shells. Applied Mathematical Modelling, 2015, 39, 2849-2860.	2.2	30
93	Buckling and postbuckling of single-walled carbon nanotubes based on a nonlocal Timoshenko beam model. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2015, 95, 939-951.	0.9	25
94	Mechanical properties of fully hydrogenated graphene sheets. Solid State Communications, 2015, 201, 1-4.	0.9	30
95	Vibration Analysis of Postbuckled Timoshenko Beams Using a Numerical Solution Methodology. Journal of Computational and Nonlinear Dynamics, 2014, 9, .	0.7	3
96	MECHANICAL PROPERTIES OF CHIRAL SILICON CARBIDE NANOTUBES UNDER HYDROGEN ADSORPTION: A MOLECULAR MECHANICS APPROACH. Nano, 2014, 09, 1450043.	0.5	14
97	Nonlinear Vibration Analysis of Microscale Functionally Graded Timoshenko Beams using the Most General form of Strain Gradient Elasticity. Journal of Mechanics, 2014, 30, 161-172.	0.7	18
98	Nonlinear forced vibration analysis of postbuckled beams. Archive of Applied Mechanics, 2014, 84, 421-440.	1.2	34
99	Vibrational analysis of carbon nanocones under different boundary conditions: An analytical approach. Mechanics Research Communications, 2014, 56, 130-135.	1.0	25
100	A hybrid continuum and molecular mechanics model for the axial buckling of chiral single-walled carbon nanotubes. Current Applied Physics, 2014, 14, 1360-1368.	1.1	21
101	Size-Dependent Thermal Buckling and Postbuckling of Functionally Graded Annular Microplates Based on the Modified Strain Gradient Theory. Journal of Thermal Stresses, 2014, 37, 174-201.	1.1	21
102	Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. European Journal of Mechanics, A/Solids, 2014, 45, 143-152.	2.1	67
103	Free vibration analysis of single- and double-walled carbon nanotubes based on nonlocal elastic shell models. JVC/Journal of Vibration and Control, 2014, 20, 670-678.	1.5	37
104	Thermal Buckling of Carbon Nanotubes. , 2014, , 4897-4903.		0
105	Various gradient elasticity theories in predicting vibrational response of single-walled carbon nanotubes with arbitrary boundary conditions. JVC/Journal of Vibration and Control, 2013, 19, 708-719.	1.5	18
106	Thermal Buckling Analysis of Multi-Walled Carbon Nanotubes Through a Nonlocal Shell Theory Incorporating Interatomic Potentials. Journal of Thermal Stresses, 2013, 36, 56-70.	1.1	15
107	A thickness-independent nonlocal shell model for describing the stability behavior of carbon nanotubes under compression. Composite Structures, 2013, 100, 323-331.	3.1	28
108	Prediction of the biaxial buckling and vibration behavior of graphene via a nonlocal atomistic-based plate theory. Composite Structures, 2013, 95, 88-94.	3.1	41

#	Article	IF	CITATIONS
109	Mechanical properties of multilayer boron nitride with different stacking orders. Superlattices and Microstructures, 2013, 53, 223-231.	1.4	40
110	An Explicit Nonlocal Frequency Formula for Monolayer Graphene Sheets. International Journal for Computational Methods in Engineering Science and Mechanics, 2013, 14, 40-44.	1.4	7
111	Graphene-Based Sensors for Monitoring Strain. International Journal of Chemoinformatics and Chemical Engineering, 2013, 3, 74-83.	0.1	0
112	Analytical Treatment of the Free Vibration of Single-Walled Carbon Nanotubes Based on the Nonlocal Flugge Shell Theory. Journal of Engineering Materials and Technology, Transactions of the ASME, 2012, 134, .	0.8	27
113	FORCE DISTRIBUTION AND OFFSET CONFIGURATION FOR CARBON NANOTUBES. International Journal of Nanoscience, 2012, 11, 1250014.	0.4	1
114	Stability of a single-layer graphene sheet with various edge conditions: a non-local plate model including interatomic potentials. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2012, 226, 51-60.	0.1	8
115	NONLOCAL ANALYTICAL FLUGGE SHELL MODEL FOR AXIAL BUCKLING OF DOUBLE-WALLED CARBON NANOTUBES WITH DIFFERENT END CONDITIONS. Nano, 2012, 07, 1250018.	0.5	28
116	Nonlocal Flugge Shell Model for Thermal Buckling of Multi-Walled Carbon Nanotubes with Layerwise Boundary Conditions. Journal of Thermal Stresses, 2012, 35, 326-341.	1.1	5
117	Effects of hydrogen adsorption on mechanical properties of chiral single-walled zinc oxide nanotubes. Journal of Applied Physics, 2012, 111, .	1.1	32
118	Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories. Composites Part B: Engineering, 2012, 43, 2985-2989.	5.9	87
119	Mechanical properties of two-dimensional graphyne sheet under hydrogen adsorption. Solid State Communications, 2012, 152, 1885-1889.	0.9	54
120	Free Vibration Analysis of Single-Walled Carbon Nanotubes Using Semi-Analytical Finite Element. International Journal for Computational Methods in Engineering Science and Mechanics, 2012, 13, 202-209.	1.4	7
121	Explicit analytical expressions for the critical buckling stresses in a monolayer graphene sheet based on nonlocal elasticity. Solid State Communications, 2012, 152, 56-59.	0.9	45
122	Mechanical properties of graphene under molecular hydrogen physisorption: An ab initio study. Solid State Communications, 2012, 152, 842-845.	0.9	17
123	Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh–Ritz technique. Computational Materials Science, 2011, 50, 3050-3055.	1.4	77
124	Nanoscale vibration analysis of embedded multi-layered graphene sheets under various boundary conditions. Computational Materials Science, 2011, 50, 3091-3100.	1.4	30
125	Thermal effect on axial buckling behavior of multi-walled carbon nanotubes based on nonlocal shell model. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 373-378.	1.3	21
126	Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. International Journal of Mechanical Sciences, 2011, 53, 786-792.	3.6	152

#	Article	IF	CITATIONS
127	Rayleigh–Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1255-1263.	0.9	105
128	Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Composite Structures, 2011, 93, 2419-2429.	3.1	143
129	Continuum Modeling of van der Waals Interaction Force Between Carbon Nanocones and Carbon Nanotubes. Journal of Nanotechnology in Engineering and Medicine, 2011, 2, .	0.8	12
130	Studying nonlinear vibrations of composite conical panels with arbitrary-shaped cutout reinforced with graphene platelets based on higher-order shear deformation theory. JVC/Journal of Vibration and Control, 0, , 107754632110248.	1.5	4
131	Graphene-Based Sensors for Monitoring Strain. , 0, , 602-611.		Ο