Federica Dagradi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2917253/publications.pdf

Version: 2024-02-01

		331670	454955
30	2,017	21	30
papers	citations	h-index	g-index
33	33	33	2837
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fear of Sudden Death During Sport Activity and the Long QT Syndrome. , 2022, , 127-137.		O
2	Mutation location and $\langle i \rangle \langle i \rangle$ ÂKs regulation in the arrhythmic risk of long QT syndrome type 1: the importance of the KCNQ1 S6 region. European Heart Journal, 2021, 42, 4743-4755.	2.2	26
3	Exercise Training-Induced Repolarization Abnormalities Masquerading as Congenital Long QT Syndrome. Circulation, 2020, 142, 2405-2415.	1.6	36
4	In a case of female-to-male sex reassignment, testosterone therapy switches on an underlying Brugada. International Journal of Arrhythmia, 2020, 21, .	0.6	1
5	<i>SCN5A</i> Mutation Type and a Genetic Risk Score Associate Variably With Brugada Syndrome Phenotype in <i>SCN5A</i> Families. Circulation Genomic and Precision Medicine, 2020, 13, e002911.	3.6	41
6	Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation, 2020, 142, 324-338.	1.6	83
7	Abnormal myocardial expression of SAP97 is associated with arrhythmogenic risk. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1357-H1370.	3.2	13
8	Genetics of Adult and Fetal Forms of Long QT Syndrome. Cardiac and Vascular Biology, 2019, , 1-43.	0.2	1
9	Generation of the human induced pluripotent stem cell (hiPSC) line PSMi002-A from a patient affected by the Jervell and Lange-Nielsen syndrome and carrier of two compound heterozygous mutations on the KCNQ1 gene. Stem Cell Research, 2018, 29, 157-161.	0.7	3
10	The genetics underlying idiopathic ventricular fibrillation: A special role for catecholaminergic polymorphic ventricular tachycardia?. International Journal of Cardiology, 2018, 250, 139-145.	1.7	42
11	Cardiac arrest and Brugada syndrome: Is drug-induced type 1 ECG pattern always a marker of low risk?. International Journal of Cardiology, 2018, 254, 142-145.	1.7	13
12	For neonatal ECG screening there is no reason to relinquish old Bazett's correction. European Heart Journal, 2018, 39, 2888-2895.	2.2	28
13	SCN5A mutations in 442 neonates and children: genotype–phenotype correlation and identification of higher-risk subgroups. European Heart Journal, 2018, 39, 2879-2887.	2.2	33
14	A wearable remote monitoring system for the identification of subjects with a prolonged QT interval or at risk for drug-induced long QT syndrome. International Journal of Cardiology, 2018, 266, 89-94.	1.7	53
15	Red Bull®: Red flag or red herring?. International Journal of Cardiology, 2017, 231, 179-180.	1.7	3
16	Management of survivors of cardiac arrest $\hat{a}\in$ " the importance of genetic investigation. Nature Reviews Cardiology, 2016, 13, 560-566.	13.7	13
17	Impact of clinical and genetic findings on the management of young patients with Brugada syndrome. Heart Rhythm, 2016, 13, 1274-1282.	0.7	89
18	The genetics underlying acquired long QT syndrome: impact for genetic screening. European Heart Journal, 2016, 37, 1456-1464.	2.2	164

#	Article	IF	CITATIONS
19	Role of common and rare variants in <i>SCN10A</i> : results from the Brugada syndrome QRS locus gene discovery collaborative study. Cardiovascular Research, 2015, 106, 520-529.	3.8	108
20	Biventricular arrhythmogenic cardiomyopathy: a paradigmatic case. ScienceOpen Research, 2015, .	0.6	0
21	A comprehensive electrocardiographic, molecular, and echocardiographic study of Brugada syndrome: Validation of the 2013 diagnostic criteria. Heart Rhythm, 2014, 11, 1176-1183.	0.7	32
22	Characterization of SEMA3A -Encoded Semaphorin as a Naturally Occurring K ν 4.3 Protein Inhibitor and its Contribution to Brugada Syndrome. Circulation Research, 2014, 115, 460-469.	4. 5	54
23	Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nature Genetics, 2013, 45, 1044-1049.	21.4	467
24	FGF12 is a candidate Brugada syndrome locus. Heart Rhythm, 2013, 10, 1886-1894.	0.7	94
25	Identification of a <i>KCNQ1</i> Polymorphism Acting as a Protective Modifier Against Arrhythmic Risk in Long-QT Syndrome. Circulation: Cardiovascular Genetics, 2013, 6, 354-361.	5.1	69
26	Vagal Reflexes Following an Exercise Stress Test. Journal of the American College of Cardiology, 2012, 60, 2515-2524.	2.8	51
27	Spectrum and Prevalence of Mutations Involving BrS1-Through BrS12-Susceptibility Genes in a Cohort of Unrelated Patients Referred for Brugada Syndrome Genetic Testing. Journal of the American College of Cardiology, 2012, 60, 1410-1418.	2.8	193
28	Torsades de pointes following acute myocardial infarction: Evidence for a deadly link with a common genetic variant. Heart Rhythm, 2012, 9, 1104-1112.	0.7	34
29	A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome. Heart Rhythm, 2009, 6, 212-218.	0.7	41
30	Congenital long QT syndrome. Orphanet Journal of Rare Diseases, 2008, 3, 18.	2.7	213